Consumption and Labor Supply with Partial Insurance : An Analytical Framework J Heathcote, K Storesletten and G Violante – AER (2014)

Thomas Bourany

Structural metrics reading group

May 2020

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance - AER (2014) May 2020 1 / 21

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption :
 - 39 % of perm. wage shock pass-though to conso.

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption :
 - 39 % of perm. wage shock pass-though to conso.
 - 2. Insurability nature of the recent increase in US inequality (1967-2006)
 - increase in risk insurability until the 1980s

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption :
 - 39 % of perm. wage shock pass-though to conso.
 - 2. Insurability nature of the recent increase in US inequality (1967-2006)
 - increase in risk insurability until the 1980s
 - 3. Life-cycle shocks vs. initial conditions determining inequality
 - Preferences heterogeneity important
- Structural model : artificial laboratory for welfare evaluation
 Consistent theory for conso & hours + Data from PSID and CEX

- Approach : Structural equilibrium model :
 - Different types of shocks : permanent/transitory + insurability
 - Resist Deaton (1997) critique : Various smoothing mechanisms
- Alternative approaches :

- Approach : Structural equilibrium model :
 - Different types of shocks : permanent/transitory + insurability
 - Resist Deaton (1997) critique : Various smoothing mechanisms
- Alternative approaches :
 - Blundell, Pistaferri and Preston (1998), Consumption Inequality and Partial Insurance
 - Show a disjuncture between income & consumption inequality in the 1980s; May be explained by change in persistence of income shocks
 - Less structural approach : directly quantify the degree of risk sharing (to permanent vs. transitory shocks) without taking a stand on how households achieve this

- Approach : Structural equilibrium model :
 - Different types of shocks : permanent/transitory + insurability
 - Resist Deaton (1997) critique : Various smoothing mechanisms
- Alternative approaches :
 - Blundell, Pistaferri and Preston (1998), Consumption Inequality and Partial Insurance
 - Show a disjuncture between income & consumption inequality in the 1980s; May be explained by change in persistence of income shocks
 - Less structural approach : directly quantify the degree of risk sharing (to permanent vs. transitory shocks) without taking a stand on how households achieve this
 - Arellano, Blundell, Bonhomme (2017) Earnings and Consumption Dynamics : A Nonlinear Panel Data Framework
 - Generalization in a quantile-based panel study
 - More details about the earning process : non-linear persistence + conditional skewness
 - these drive the heterogeneous responses in consumption

Model : economy with partial insurance

Extension of Constantinides and Duffie (1996) : incomplete-market model ... but with islands !

Model : economy with partial insurance

- Extension of Constantinides and Duffie (1996) : incomplete-market model ... but with islands !
- Two types of permanent shocks : (partial insurance)
 - Island level shocks : not insurable
 - Individual/idiosyncratic shocks : insurable
- Mechanisms for consumption smoothing :
 - Adjustment in labor supply
 - Borrowing/lending in risk-free bond
 - Government redistribution : progressive taxation
- Provide closed form solution for $c_t(s^t), h_t(s^t), w_t$
- Structural estimation via GMM

Model : Household preferences

- Perpetual youth model, constant survival probability δ
- Continuum of individuals in a continuum of islands
- Preferences over consumption c_t and hours h_t

$$\mathbb{E}_b \sum_{t=b}^{\infty} (\beta \delta)^{t-b} u(c_t, h_t; \varphi)$$
$$u(c_t, h_t; \varphi) = \frac{c_t^{1-\gamma} - 1}{1-\gamma} - \exp(\varphi) \frac{h_t^{1+\sigma}}{1+\sigma}$$

• Preference shock : cohort born at time *t* draws $\varphi_t \sim F_{\varphi t}$ with $\mathbb{V}ar = \nu_{\varphi t}$

Productivity is composed of an idiosyncratic and island specific components :

$$\log w_t = \underbrace{\alpha_t}_{\text{island}} + \underbrace{\epsilon_t}_{\text{ind.}}$$

island level follows a random walk (unit root !)

$$\alpha_t = \alpha_{t-1} + \omega_t$$
 with $\omega_t \sim F_{\omega t}$ $\mathbb{V}ar = \nu_{\omega t}$

individual component is formed by a random walk and an i.i.d. transitory

$$\epsilon_t = \kappa_t + \theta_t \quad \text{with} \quad \theta_t \sim F_{\theta t} \quad \mathbb{V}\text{ar} = \nu_{\theta t}$$

$$\kappa_t = \kappa_{t-1} + \eta_t \quad \text{with} \quad \eta_t \sim F_{\eta t} \quad \mathbb{V}\text{ar} = \nu_{\eta t}$$

Productivity : agents entering at time t draw $\alpha^0 \& \kappa^0$ from cohort specific distributions, with $\mathbb{V}ar = \nu_{\alpha^0 t}$ and $\nu_{\kappa^0 t}$

Heathcote, Storesletten and Violante / T. Bourany

6/21

- ► No aggregate uncertainty (due to risk pooling in aggregate)
- Initial conditions α_0 and φ are drawn before trading starts

- ► No aggregate uncertainty (due to risk pooling in aggregate)
- Initial conditions α_0 and φ are drawn before trading starts
- Agents in an island have a sequence of shocks ω^t
- Within island, agents can trade a complete set of insurance contracts at t ≥ b : amount B_t(s_{t+1}; s^t), over the state : s_{t+1} = (ω_{t+1}, η_{t+1}, θ_{t+1})

- ▶ No aggregate uncertainty (due to risk pooling in aggregate)
- Initial conditions α_0 and φ are drawn before trading starts
- Agents in an island have a sequence of shocks ω^t
- Within island, agents can trade a complete set of insurance contracts at t ≥ b : amount B_t(s_{t+1}; s^t), over the state : s_{t+1} = (ω_{t+1}, η_{t+1}, θ_{t+1})
- ► Between island, limited they can trade, at $t \ge b$, over $s_{t+1} = (\eta_{t+1}, \theta_{t+1})$, but can't condition on ω_{t+1}
- History of shocks : $s^t = s_b, s_{b+1} \dots s_{t+a} \dots s_t \equiv$

$$s_j = \begin{cases} (b, \varphi, \alpha_0, \kappa_0, \theta_b) & \text{for } j = b\\ (\omega_j, \eta_j, \theta_j) & \text{for } j > b \end{cases}$$

Heathcote, Storesletten and Violante / T. Bourany

Model : Budget and Asset prices

- Gross income : $y_t = w_t h_t + CRS$ production \Rightarrow agents paid MPL w_t
- Yields to net earnings are given by :

$$\widetilde{y}_t = \lambda(y_t)^{1-\tau}$$

• The higher τ , the stronger the redistribution + Approximates well the US tax system

Model : Budget and Asset prices

- Gross income : $y_t = w_t h_t$ + CRS production \Rightarrow agents paid MPL w_t
- Yields to net earnings are given by :

$$\widetilde{y}_t = \lambda(y_t)^{1-\tau}$$

The higher τ, the stronger the redistribution + Approximates well the US tax system

Budget :

$$\lambda \left[w_t(s')h_t(s') \right]^{1-\tau} + d_t(s') = c_t(s') + \int Q_t(s_{t+1};s')B_t(s_{t+1};s')d\mathbf{s}_{t+1} + \int Q_t^*(\mathbf{z}_{t+1};s')B_t^*(\mathbf{z}_{t+1};s')d\mathbf{z}_{t+1} \\ d_t(s') = \delta^{-1} \left[B_{t-1}(s_t;s'^{-1}) + B_{t-1}^*(\mathbf{z}_t;s'^{-1}) \right]$$

Important assumptions :

- all assets are in 0 net supply
- at birth agents have 0 financial asset

Model : Result – Prop 1

- Quite standard definition of equilibrium allocation
- Results :
 - (i) Constantinides-Duffie -type of result :
 - \Rightarrow no insurance traded between islands $B_t^*(\mathcal{Z}; \mathbf{s}^t) = 0$

Model : Result – Prop 1

- Quite standard definition of equilibrium allocation
- Results :
 - (i) Constantinides-Duffie -type of result :

 \Rightarrow no insurance traded between islands $B_t^*(\mathcal{Z}; \mathbf{s}^t) = 0$

- Where is this no-trade result coming from?
- Shocks i.i.d. (common $F_{\omega t}$), multiplicative and unit root (permanent)
- Power law pref. (but extend to others)
- Initial wealth degenerated at zero, and zero-net supply.
- Island dichotomy (either full or no-insurance)
- Wealth is redundant state variable
- Fair price for inter-island insurance supports this no-trade (make agents indifferent, c.f. next slide)

Consumption & Labor with Partial Insurance – AER (2014)

Results - closed form solutions :

- (i) CD no-trade result
- (ii) Consumption and hours are given by closed formulas :

$$\log c_t \left(\mathbf{s}^t \right) = -(1-\tau)\widehat{\boldsymbol{\varphi}} + (1-\tau) \left(\frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma} \right) \mathbf{\alpha}_t + \widetilde{C}_t^a$$
$$\log h_t \left(\mathbf{s}^t \right) = -\widehat{\boldsymbol{\varphi}} + \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma} \right) \mathbf{\alpha}_t + \frac{1}{\widehat{\sigma}} \varepsilon_t + \widetilde{H}_t^a$$

with age a = t - b, age/date-specific constants \widetilde{C}_t^a and \widetilde{H}_t^a , taxweighted Frisch elasticity $\frac{1}{\widehat{\sigma}} \equiv \frac{1-\tau}{\sigma+\tau}$, rescaled pref. $\widehat{\varphi} \equiv \frac{\varphi}{\sigma+\gamma+\tau(1-\gamma)}$

(iii) Bond/insurance price :

 $Q_t \left(S; s^{t}\right) = Q_t(S) = \beta \exp\left(-\gamma \Delta C_{t+1}\right) \int_{S} \exp\left(-\gamma (1-\tau) \frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma} \omega_{t+1}\right) dF_{s,t+1}$ $Q_t^* \left(Z; s^{t}\right) = Q_t^*(Z) = \Pr\left((\eta_{t+1}, \theta_{t+1}) \in Z\right) \times Q_t(S)$ with ΔC_t^a independent of $a + F_{st}$ integrates over (ω, η, θ)

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance - AER (2014)

Taking the model to the data : Structural estimation

- Modification/Augmentation of the model
 - (i) HH composition/size and (ii) Measurement errors (all terms in μ)
- Data : repeated cross section
 - Moments : time-t and age-a specific, e.g. α

$$\operatorname{Var}_t^a(\alpha) = v_{\alpha^0, t-a} + \sum_{j=0}^{a-1} v_{\omega, t-j}$$

- Use PSID with fine age groups :
 - moments in level involving hours h_t and wages w_t : Macro-moments
 - same moments in difference : dispersion over life cycle :

$$\Delta \mathbb{V}\mathrm{ar}_t^a(x) = \mathbb{V}\mathrm{ar}_t^a(x) - \mathbb{V}\mathrm{ar}_{t-1}^{a-1}(x)$$

- same moments *of* differences $\mathbb{V}ar_t^a(\Delta x)$ and second differences $\mathbb{V}ar_t^a(\Delta^2 x)$
- Use CEX with fine age groups for
 - moments in level involving consumption c_t (Macro-moments and dispersion over life cycle)

Structural estimation : Macro moments - 1

Macro moments : (labor)

$$\begin{aligned} \mathbb{V}\mathrm{ar}_{t}^{a}(\log \hat{w}) &= \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) + \mathbb{V}\mathrm{ar}_{t}^{a}(\varepsilon) + v_{\mu y} + v_{\mu h} \\ \mathbb{V}\mathrm{ar}_{t}^{a}(\log \hat{h}) &= \mathbb{V}\mathrm{ar}_{t}^{a}(\widehat{\varphi}) + \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right)^{2} \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) + \frac{1}{\widehat{\sigma}^{2}} \mathbb{V}\mathrm{ar}_{t}^{a}(\varepsilon) + v_{\mu h} \\ \mathbb{C}\mathrm{ov}_{t}^{a}(\log \hat{w}, \log \hat{h}) &= \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right) \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) + \frac{1}{\widehat{\sigma}} \mathbb{V}\mathrm{ar}_{t}^{a}(\varepsilon) - v_{\mu h} \end{aligned}$$

Macro moments : (consumption)

$$\begin{aligned} \mathbb{V}\mathrm{ar}_{t}^{a}(\log \hat{c}) &= (1-\tau)^{2} \mathbb{V}\mathrm{ar}_{t}^{a}(\widehat{\varphi}) + (1-\tau)^{2} \left(\frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma}\right)^{2} \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) + v_{\mu c} \\ \mathbb{C}\mathrm{ov}_{t}^{a}(\log \hat{h}, \log \hat{c}) &= (1-\tau) \mathbb{V}\mathrm{ar}_{t}^{a}(\widehat{\varphi}) + \frac{(1-\tau)(1+\widehat{\sigma})(1-\gamma)}{(\widehat{\sigma}+\gamma)^{2}} \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) \\ \mathbb{C}\mathrm{ov}_{t}^{a}(\log \hat{w}, \log \hat{c}) &= (1-\tau) \left(\frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma}\right) \mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) \end{aligned}$$

Heathcote, Storesletten and Violante / T. Bourany

Structural estimation : Life-cycle moments - 2

Life-cycle moments (labor) : get rid of indiv. initial conditions

$$\Delta \mathbb{V}ar_t^a(\log \hat{w}) = \mathbf{v}_{\omega t} + \mathbf{v}_{\eta t} + \Delta \mathbf{v}_{\theta t}$$
$$\Delta \mathbb{V}ar_t^a(\log \hat{h}) = \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right)^2 \mathbf{v}_{\omega t} + \frac{1}{\widehat{\sigma}^2}\left(\mathbf{v}_{\eta t} + \Delta \mathbf{v}_{\theta t}\right)$$
$$\Delta \mathbb{C}ov_t^a(\log \hat{w}, \log \hat{h}) = \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right)\mathbf{v}_{\omega t} + \frac{1}{\widehat{\sigma}}\left(\mathbf{v}_{\eta t} + \Delta \mathbf{v}_{\theta t}\right)$$

Life-cycle moments (consumption) :

$$\Delta \mathbb{V}ar_t^a(\log \hat{c}) = (1-\tau)^2 \left(\frac{1+\hat{\sigma}}{\hat{\sigma}+\gamma}\right)^2 v_{\omega t}$$
$$\Delta \mathbb{C}ov_t^a(\log \hat{h}, \log \hat{c}) = (1-\tau)\frac{(1-\gamma)(1+\hat{\sigma})}{(\hat{\sigma}+\gamma)^2} v_{\omega t}$$
$$\Delta \mathbb{C}ov_t^a(\log \hat{w}, \log \hat{c}) = (1-\tau) \left(\frac{1+\hat{\sigma}}{\hat{\sigma}+\gamma}\right) v_{\omega t}$$

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance - AER (2014)

Structural estimation : Micro moments - 3

Micro moment (labor) : link the variance over periods

$$\begin{aligned} \mathbb{V}\mathrm{ar}_{t}^{a}(\Delta\log\hat{w}) &= \mathbf{v}_{\omega t} + \mathbf{v}_{\eta t} + \mathbf{v}_{\theta t} + \mathbf{v}_{\theta, t-1} + 2\mathbf{v}_{\mu y} + 2\mathbf{v}_{\mu h} \\ \mathbb{V}\mathrm{ar}_{t}^{a}(\Delta\log\hat{h}) &= \left(\frac{1-\gamma}{\hat{\sigma}+\gamma}\right)^{2}\mathbf{v}_{\omega t} + \frac{1}{\hat{\sigma}^{2}}\left(\mathbf{v}_{\eta t} + \mathbf{v}_{\theta t} + \mathbf{v}_{\theta, t-1}\right) + 2\mathbf{v}_{\mu h} \\ \mathbb{C}\mathrm{ov}_{t}^{a}(\Delta\log\hat{w}, \Delta\log\hat{h}) &= \left(\frac{1-\gamma}{\hat{\sigma}+\gamma}\right)\mathbf{v}_{\omega t} + \frac{1}{\hat{\sigma}}\left(\mathbf{v}_{\eta t} + \mathbf{v}_{\theta t} + \mathbf{v}_{\theta, t-1}\right) - 2\mathbf{v}_{\mu h} \\ \mathbb{V}\mathrm{ar}_{t}^{a}\left(\Delta^{2}\log\hat{w}\right) &= \mathbf{v}_{\omega t} + \mathbf{v}_{\omega, t-1} + \mathbf{v}_{\eta t} + \mathbf{v}_{\eta, t-1} \\ &+ \mathbf{v}_{\theta t} + \mathbf{v}_{\theta, t-2} + 2\mathbf{v}_{\mu y} + 2\mathbf{v}_{\mu h} \end{aligned}$$

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance - AER (2014) May 2020 14 / 21

Structural estimation - in practice

 Estimate parameters using minimum distance (11, 532 moments and 164 parameters)

$$\min_{\Lambda} [\widehat{m} - m(\Lambda)]' W[\widehat{m} - m(\Lambda)]$$

- Small sample size : $W \equiv Id$ and conf. interval : (block)-bootstrap
- Proposition 2 and corollaries (and proof) : identification
- Experiment where they shut down each channel : show that all the terms matter to match both consumption and labor moments.

Structural estimation - result

Prefer	ence Elas	ticities	Life-Cycle Shocks			
σ 2.165 (0.173)	$\gamma \\ 1.713 \\ (0.054)$		$\overline{v_\omega} \\ 0.0056 \\ (0.0008)$	$\overline{v_\eta} \ 0.0044 \ (0.0012)$	$ $	
Initia	l Heterog	eneity	Measurement Error			
$\overline{v_{lpha^0}} \ 0.102 \ (0.030)$	$\overline{v_{\kappa^0}} \ 0.047 \ (0.023)$	$\overline{v_{\widehat{\varphi}}}$ 0.054 (0.016)	$v_{\mu y} \ 0.000 \ (0.000)$	$v_{\mu h} \ 0.036 \ (0.006)$	$v_{\mu c} \ 0.041 \ (0.002)$	

Other parameters (external setting) :

- $\delta = 0.996$, $\tau = 0.185$ ($R^2 = 0.92$), and
 - $1/\hat{\sigma} = 0.35$ consistent with literature
- Roughly 45% of permanent shocks appears to be insurable

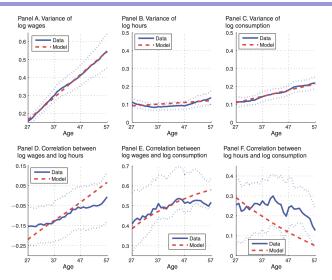


FIGURE 1. DATA AND MODEL FIT FOR MOMENTS IN LEVELS ALONG THE AGE DIMENSION

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance - AER (2014) May 2020 17 / 21

Structural estimation – Passthrough from income to consumption

Pass-through from permanent wage shocks to consumption :

$$\underbrace{\phi_t^{w,c}}_{0.386} = \underbrace{\frac{v_{\omega t}}_{\omega t} + v_{\eta t}}_{0.560} \cdot \underbrace{\frac{1+\hat{\sigma}}{\hat{\sigma}+\gamma}}_{0.845} \cdot \underbrace{(1-\tau)}_{0.815}.$$

- progressive taxation 0.815
- labor supply 0.845
- private insurance 0.63
- overall $\varphi_t^{w,c} = 0.386$
- ► the pass-through $\phi_t^{y,c}$ from pre-tax earnings y = wh is 0.272, very similar to Blundell, Pistaferri and Preston which found 0.225

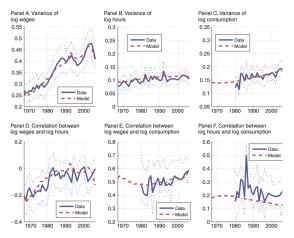


FIGURE 4. DATA AND MODEL FIT FOR MOMENTS IN LEVELS ALONG THE TIME DIMENSION

Sharp rise in the wage-hours-corr. : rise in variance of insurable wage and fall in variance of uninsurable shocks

Heathcote, Storesletten and Violante / T. Bourany

Consumption & Labor with Partial Insurance – AER (2014) Ma

May 2020 19 / 21

Decomposition of inequality

▶ Initial heterogeneity : explains between 40-50 percent

		Percent contribution to total variance								
	Total variance	Initial heterogeneity			Life-cycle shocks		Measurements			
		Preferences	Uninsurable	Insurable	Uninsurable	Insurable	Error			
var(log ŵ)	0.351	0.0	31.5	10.0	17.1	31.3	10.1			
$var(log \hat{h})$	0.107	48.9	2.2	3.2	1.2	9.8	34.7			
$var(log \hat{y})$	0.432	11.7	22.8	12.5	10.4	43.7	0.0			
$var(log \hat{c})$	0.159	20.0	32.6	0.0	17.8	0.0	29.6			

TABLE 3-DECOMPOSITION OF CROSS-SECTIONAL INEQUALITY

Summary

- Tractable framework a la Constantinides and Duffie to study risk-sharing
- Powerful structural GMM estimation
- Match key facts and trends about inequality, income risk and variance in consumption over the life-cycle and over time