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What I’m Going to Talk About

I Mainly intuition (no proofs)

I Very few words on healthcare insurance and even less on
California

I Get you to where I’m at in understanding this paper (no
proofs!)

I It would be great if this presentation could be more of a
discussion

I Demonstration (?)
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Motivation

I Current (fake) MSM approaches for demand function
identification and estimation are based heavily on
distributional assumptions
I Logit
I BLP framework

I The basic parametric set for discrete choice models is

Yim = arg max
j∈J

X ′i ,j ,mβi ,m − αi ,mPi ,j ,mj ,m + εi ,j ,m

where ε ∼ T1EV and there is some heterogeneity in the
coefficient, which are drawn from some distribution
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Motivation

I These strong distributional assumptions may not be
innocuous.

I It’s hard to separate how much of our inference comes from
these assumptions.

I Currently, there aren’t a lot of alternative methods of
estimating discrete choice problems (can’t do regression,
thinking on causality is not clear in settings where there are
multiple outcomes and non-scalar treatments, few papers,
e.g., Compiani, 2019).
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Motivation

I This paper constructs a framework for dealing with discrete
choice problems while imposing a minimum amount of
assumptions

I Unfortunately, we won’t see any magic here
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Basic Set-Up

I Each consumer chooses one option Yi from a set of J+1
options J = {0, 1, 2..., J}

I Each option has some price Pi ,j , where price can be different
between individuals

I Consumer i has a vector of unobserved
Vi = (Vi ,0,Vi ,1, ...,Vi ,J) valuation for each plan, with the
standard normalization that Vi ,0 = 0

I The indirect utility is additively separable in prices and latent
valuation Vi ,j −Pi ,j , and the consumer decision rule is given by

Yi = arg max
j∈J

Vi ,j − Pi ,j
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Basic Set-Up - A Few Notes

I The additive separability assumption places limitations on
substitution patterns, such as the absence of an income effect
on the intensive margins However, we may enable Vi ,j to differ
across income groups (provided that price changes do not
cause consumers to shift between income categories or alter
preferences, even if their income has changed).

I There are no restrictions on the relationship between the
covariates and the utility, as we have in the BLP framework.
Conditional on the x ’s, we allow for the distribution of Vi ,j to
change freely

I This model permits the Vi ,j and the prices to be correlated,
although to identify the effect of a price shift, we need to
assume exogenous movement, conditional on observables
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Counterfactuals and Parameters of interest
I The model primitive is the density f (Vi |m, x)
I We can construct counterfactual objectives by integrating

over this distribution
I For instance, suppose we wish to determine the proportion of

consumers who would purchase product j under a certain
pricing scheme∫

I
[
vj − p?j ≥ vk − p?k for all k

]
f (v |m, x)dv

I We can also investigate causal questions regarding changes in
surplus resulting from change in prices∫ {

max
j∈J

vj − p?j

}
f (v |m, x)dv︸ ︷︷ ︸

consumer surplus under p?

−
∫ {

max
j∈J

vj − pj

}
f (v |m, x)dv︸ ︷︷ ︸

consumer surplus under p

I We think of these as the target parameters, which are
θ : F → Rdθ
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Additional Assumptions

I Let Pi ,j = P(xi ,mi , εi )

I The Instrument Assumption. Wi and Zi are two subvectros
of X and M, such that Zi satisfy the exogeneity assumption

fV |WZ (v |w , z) = fV |WZ

(
v |w , z ′

)
for all z , z ′,w , and v

I The distribution of valuations is invariant to shifts in Zi ,
conditional on Wi . That is, Zi is exogenous

9 / 20



Additional Assumptions

I Support. f is concentrated in a known set, such that∫
V•(w)

fV |WZ (v |w , z)dv = 1 for all w , z

where V • (w) is the support of f

I This can be satisfied by letting V • (w) = RJ
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Some Notes
I This assumption is similar to the Heckman selection model,

where we look for variation in the cost. Specifically, we can
think of a regular Heckman setup:

Y1 = µ1(x) + u1

Y0 = µ0(x) + u0

D = I{Y1 − µc,1(z) > Y0 − µc,0(z)}

Here, we are focusing on the ”first stage” to estimate the
model.

I In contrast to the regular BLP setup, where we consider
variation in prices across markets, here we are interested in
variation within homogeneous groups. Therefore, we may
want to condition on the market.

I The more prices vary with Zi , the more information we will
have to pin down different parts of the density of valuations,
f , and therefore the target parameter, θ.
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The identified Sets

I We are interested in the set of possible values that the target
parameter θ(f ) can take, given the observed data

I Let s(m, x) = P[Yi = j |mi , xi ]

I As consumers choose the option that maximizes their surplus,
we have that the shares are

sj(m, x |f ) =

∫
Vj (p)

f (v |m, x)dv

where Vj(p) = {(v1, ...vJ) ∈ Rj |vj − pj > vk − pk for all k}
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The identified Sets

I The identified set of valuation densities is the set of all f that
matches the observed data

F∗ = {f |satisfies the assumptions and the share conditions}

I The identified set for θ is given by

Θ∗ = {θ(f ) : f ∈ F∗}
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Minimal Relevant Partition

I Our goal is to compute Θ exactly using the observed data and
the Minimal Relevant Partition (MRP)

I The MRP partitions the space of valuations such that any two
consumers with valuations in the same set will exhibit the
same choice behavior under different prices pa and p

14 / 20



MRP
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MRP
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MRP - A Binary Example

I How can we use MRP to solve for the identified set?
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MRP - a J=2 example

I Consider the figure from before, and assume that the choice
probabilites, under price 1 are as follows

s0 (m, xa) = .20, s1 (m, xa) = .14, and s2 (m, xa) = .66

I Therefore, we know that∫
V1

f (v |m)dv = s0 (m, xa) = .20∫
V5

f (v |m)dv +

∫
V6

f (v |m)dv = s1 (m, xa) = .14∫
V2

f (v |m)dv +

∫
V3

f (v |m)dv +

∫
V4

f (v |m)dv = s2 (m, xa) = .66
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Solving the thing

I Assume we want to find the share of consumers who would
buy product 2, under the new price.

I Let
∫
Vi = φi and notice that we can write this problem as a

linear programming problem for the upper bound

t?ub ≡ maxφ∈R6 φ3
subject to: φ1 = .20
φ5 + φ6 = .14
φ2 + φ3 + φ4 = .66

φl ≥ 0 for l = 1, . . . , 6

I tub = 0.66 and tlb = 0.

I and similarly for the lower bound
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Final Remarks

I In practice, when dealing with multiple markets and
covariates, but interested in the aggregate, one can simply
average the bounds over markets and covariates:

θa =
∑

P(X = x ,M = m|f )∆Sharej(m, x |f )

I To use this method in real-world settings, one needs:
I Some exogenous variation in costs
I A discrete choice setting (otherwise, just use instruments)
I A strong desire to avoid distributional assumptions

I Note that getting strict bounds can be challenging, so it’s
important to have enough variation in costs

I Noise

I Imposing restrictions
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