Structural Metrics Reading Group Method of Simulated Moments

Olivia Bordeu and Lillian Rusk

April， 2020

Recap of MSL

－Last week Francesco introduced us maximum simulated liklihood（MSL）
－MSL is MLE except that simulated probabilities replace true probabilities
－Recall，

$$
\begin{gathered}
S L(\theta \mid x)=\check{f}(x \mid \theta)=\prod_{i=1}^{N} \check{P}_{i}\left(x_{i} ; \theta\right) \\
S L L(\theta \mid x)=\log \check{f}(x \mid \theta)=\sum_{i=1}^{N} \log \check{P}_{i}\left(x_{i} ; \theta\right) \\
\widehat{\theta}_{M S L} \in \arg \max _{\widetilde{\theta}} S L(\widetilde{\theta} \mid x) \Longleftrightarrow \widehat{\theta}_{M S L} \in \arg \max _{\widetilde{\theta}} \operatorname{SLL}(\widetilde{\theta} \mid x)
\end{gathered}
$$

where \check{P}_{i} is a simulated approximation to P_{i}

An undesirable property

－Suppose \check{P}_{i} is an unbiased simulator of $P_{i}(\theta)$
－Since the \log operator is non－linear， $\log \check{P}_{i}$ is not unbiased for $\log P_{i}(\theta)$
－Bias in $\log \check{P}_{i} \Longrightarrow$ bias in $\theta_{\text {MSL }}$
－Bias diminishes with simulation draws（ R ），but for a fixed R ，the estimator is biased
－For fixed $\mathrm{R}, \theta_{\text {MSL }}$ is inconsistent
－Is there an alternative simulated estimator that is consistent for fixed R？
－Drum roll．．．

Method of simulated moments（MSM）

－MSM is GMM but it replaces the model moments with simulated moments
－MSM is to GMM what MSL was to MLE
－MSM can be used to estimate likelihoods，and it will attain the goal of being consistent for fixed R

Let＇s first refresh our memory of GMM

－GMM estimates parameters by minimizing distance btw model and data moments
－$\mu(x \mid \theta)$ Model moments under parameter θ
－$\mu(x)$ Same moment calculated from data x

$$
\hat{\theta}_{G M M}:=\underset{\theta}{\arg \min }\|\mu(x \mid \theta)-\mu(x)\|
$$

－Estimator depends on choice of distance measure

Motivation for method of simulated moments（MSM）

－Roadblocks to GMM
－Calculating the moments is too cumbersome
－Ex．Multiple integrals over nonlinear functions（McFadden（1989））
－Model includes a latent variable
－Laroque and Salanié（1993）
－No analytic representation exists
－MSM to the rescue！

MSM overview

1. Generate simulated datasets

- For some choice of $\hat{\theta}$, simulate the model data R times $\tilde{x}=\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{r}, \ldots, \tilde{x}_{R}\right\}$
- One simulation is one dataset with as many obs as the observed sample

2. Calculate associated moments for the simulated data

$$
\mu^{R}(\tilde{x} \mid \hat{\theta})=\frac{1}{R} \sum_{r} m\left(\tilde{x}_{r} \mid \hat{\theta}\right)
$$

3. Compute moments for observed data $\mu(x)$
4. Calculate the distance between simulated and observed moments

$$
\left\|\mu^{R}(\tilde{x} \mid \hat{\theta})-\mu(x)\right\|
$$

5. Search over $\hat{\theta}$ to minimize the distance calculcated in step 4

$$
\hat{\theta}_{M S M}:=\underset{\theta}{\arg \min }\left\|\mu^{R}(\tilde{x} \mid \theta)-\mu(x)\right\|
$$

Practioner's notes

- Random draws: When simulating, you want random draws to be held constant so the only thing changing in the minimization problem is the value of the vector of parameters
- Normalizing moments: Most common distance measure is L^{2} norm. To avoid unintended moment weighting due to units, convert differences in moments to percent deviations
- $e(\tilde{x}, x \mid \theta):=\frac{\hat{m}(\tilde{x} \mid \theta)-m(x)}{m(x)}$ referred to as the "moment error function"
- Then,

$$
\hat{\theta}_{M S M}:=\underset{\theta}{\arg \min } e(\tilde{x}, x \mid \theta)^{\prime} W e(\tilde{x}, x \mid \theta)
$$

Comparison to MSL

- Consistency: MSM wins
- $\check{P}_{n}(\theta)$ enters linearly so if $\check{P}_{n}(\theta)$ is unbiased \Longrightarrow MSM is unbiased
- Since there is no simulation bias, MSM is consistent even when R is fixed
- Efficiency: MSL wins
- MSM is less efficient than MSL
- Recall that GMM is less efficient unless ideal instruments (scores) are used
- Scores are a function of true $\ln P_{n}(\theta)$
- In summary, both approaches can be justified (See Adda and Cooper (2003))

Limitations to MSM

- Researcher must make following choices:
- Which moments to use
- Number of simulations
- Weighting matrix, W,
- Optimization algorithm
- It is not well-understood how these choices affect performance of MSM (See Eisenhauer, Heckman, and Mosso (2015)

A Simple Example: Mixed Logit (again!)

Let us first consider the simple logit case where $i \in\{1, . ., N\}$ people choose from $j \in\{1, \ldots, J\}$ alternatives:

$$
V_{i j}=X_{i j}^{\prime} \beta+\epsilon_{i j} \quad \text { with } \epsilon_{i j} \sim T 1 E V, \quad \text { where } P_{j}\left(X_{i j} \mid \beta\right)=\frac{e^{X_{i j}^{\prime} \beta}}{\sum_{k} e^{X_{i k}^{\prime} \beta}}
$$

We could estimate $\theta=\beta$ using GMM, where we use the implied choice probabilities as moments:

$$
\hat{\theta}_{G M M}:=\underset{\theta}{\arg \min }\left[\sum_{i}^{N} \sum_{j}^{J}\left(D_{i j}-P\left(X_{i j} \mid \theta\right)\right) z_{i j}\right]^{\prime} W\left[\sum_{i}^{N} \sum_{j}^{J}\left(D_{i j}-P\left(X_{i j} \mid \theta\right)\right) z_{i j}\right]
$$

GMM encompasses the Maximum Likelihood Estimator, where we can use the FOC of the log-likelihood as the moment:

$$
\hat{\theta}_{M L} \in \underset{\theta}{\arg \max } \underbrace{\sum_{i=1}^{N} \sum_{j=0}^{J} D_{i j} \log P_{j}\left(X_{i j} \mid \theta\right)}_{=L L(\theta \mid x)} \Longleftrightarrow \hat{\theta}_{G M M}:=\underset{\theta}{\arg \min \left\|\frac{\partial L L(\theta \mid x)}{\partial \theta}\right\|}
$$

A Simple Example: Mixed Logit (again!)

However, with random coefficients, the choice probabilities might not have a closed form solution:

$$
V_{i j}=X_{i j}^{\prime} \beta_{i}+\epsilon_{i j} \quad \text { with } \epsilon_{i j} \sim T 1 E V \quad \text { and } \beta_{i} \sim f(\beta ; \theta)
$$

Then, we have that:

$$
P\left(D_{i j}=1 \mid X_{i j} ; \theta\right)=\int \frac{e^{X_{i j}^{\prime} \beta}}{\sum_{k} e^{X_{i k}^{\prime} \beta}} f\left(\beta_{i}\right) d \beta_{i}
$$

A Simple Example：Mixed Logit（again！）

Following the same procedure as in Maximum Simulated Likelihood，we approximate $P\left(D_{i j} \mid X_{i j} ; \theta\right)$ through simulation：
1．Draw $R \gg 0$ independent draws β^{r} from $f(\beta ; \theta)$
2．Compute the choice probability as：

$$
\check{P}_{j}\left(X_{i j} \mid \theta\right)=\frac{1}{R} \sum_{r=1}^{R} \frac{e^{X_{i j}^{\prime} \beta^{r}}}{\sum_{k} e^{X_{i k}^{\prime} \beta^{r}}}
$$

Then，the Method of Simulated Moments estimator of θ is given by：

$$
\hat{\theta}_{M S M}:=\underset{\theta}{\arg \min }\left[\sum_{i}^{N} \sum_{j}^{J}\left(D_{i j}-\check{P}_{j}\left(X_{i j} \mid \theta\right)\right) z_{i j}\right]^{\prime} W_{R}\left[\sum_{i}^{N} \sum_{j}^{J}\left(D_{i j}-\check{P}_{j}\left(X_{i j} \mid \theta\right)\right) z_{i j}\right]
$$

A Simple Example: Mixed Logit (again!)

Remember, in the Maximum Simulated Likelihood case, the estimator of θ was given by:

$$
\hat{\theta}_{M S L}:=\underset{\theta}{\arg \max } S L L(\theta \mid x)
$$

where

$$
S L L(\theta \mid x)=\sum_{i=1}^{N} \sum_{j=0}^{J} D_{i j} \log \check{P}(x \mid \theta)
$$

- Question: Does MSM encompass MSL in this case? If the likelihood does not have a closed form solution, we can't use the first order condition as a moment in the MSM.

The Weighting Matrix W_{R}

- Optimal weighting matrix: Smallest possible asymptotic variance of $\theta(W)$.
- The optimal weighting matrix is the inverse variance covariance matrix of the moments at the optimal moments.
- If $e(\tilde{x}, x \mid \theta)$ is the moment error function, then:

$$
\begin{aligned}
\hat{\theta}_{M S M} & :=\underset{\theta}{\arg \min } e(\tilde{x}, x \mid \theta)^{\prime} W e(\tilde{x}, x \mid \theta) \\
W^{o p t} & =\left(\frac{1}{N} e\left(\tilde{x}, x \mid \theta_{0}\right) e\left(\tilde{x}, x \mid \theta_{0}\right)^{\prime}\right)^{-1}
\end{aligned}
$$

- When R increases to infinity \Longrightarrow the variance of the MSM estimator is the same as the variance of the GMM estimator

The Weighting Matrix W_{R} : Two-step estimator

1. Use $W=I$ to estimate a first-step SMM estimator for θ :

$$
\hat{\theta}_{1}=\underset{\theta}{\arg \min } e(\tilde{x}, x \mid \theta)^{\prime} l e(\tilde{x}, x \mid \theta)
$$

2. Using θ_{1}, estimate \hat{W} :

$$
\hat{W}\left(\hat{\theta}_{1}\right)=\left(\frac{1}{N} e\left(\tilde{x}, x \mid \hat{\theta}_{1}\right) e\left(\tilde{x}, x \mid \hat{\theta}_{1}\right)^{\prime}\right)^{-1}
$$

3. Lastly, re-estimate the MSM estimator using the optimal two-step weighting matrix.

$$
\hat{\theta}_{2}=\underset{\theta}{\arg \min } e(\tilde{x}, x \mid \theta)^{\prime} \hat{W}\left(\hat{\theta}_{1}\right) e(\tilde{x}, x \mid \theta)
$$

- $\hat{\theta}_{2}$ is called the two-step MSM estimator
- If we would iterate over this procedure until \hat{W}_{i+1} is very close to \hat{W}_{i} : Iterated variance covariance estimator of W

Another Example: Competition between Walmart and Kmart

- Paper: What Happens When Walmart Comes to Town by Panle Jia (ECMA 2008)

Consider two chains competing in M markets: Kmart and Walmart. Each chain faces the following problem:

$$
\max _{D_{1}, \ldots, D_{M}} \Pi_{i}=\sum_{m=1}^{M}\left[D_{m}\left(\beta_{i} X_{m}+\eta_{i, m}+\delta_{i j} D_{j, m}+\delta_{i i} \sum_{l \neq m} \frac{D_{i, l}}{Z_{m l}}\right)\right]
$$

- X_{m} : market characteristics
- $\eta_{i, m}$: firm and market specific profit shock
- $\delta_{i j} D_{j, m}$: My profits are affected in market m if my competitor decides to enter market m
- $\delta_{i i} \sum \frac{D_{i, l}}{Z_{m l}}$: The decision to open a store in market m increases the profits on other markets through the chain effect.

Another Example: Competition between Walmart and Kmart

We want to estimate $\theta=\left(\beta_{i}, \delta_{i j}, \delta_{i i}\right)$ where $i \in\{$ Walmart, Kmart $\}$

- This is a very complicated problem!
- There is no close solution for the equilibrium objects of this economy.
- Jia proposed a complicated algorithm to determine the equilibrium.
- MSM gives the flexibility necessary to estimate θ, she uses the following moments:
- Total number of Kmart stores and Walmart stores
- Market structure: Number of markets where only one chain enters, where both enters
- Chain equilibrium profits
- Interaction between market characteristic's and equilibrium objects

Use of MSM and further resources

- Applications
- Models of job search (Flinn and Mabli, 2008)
- Educational and occupational choices (Adda et al., 2011, 2013)
- Household choices (Flinn and Del Boca, 2012)
- Stochastic volatility models (Andersen et al., 2002; Raknerud and Skare, 2012)
- Dynamic stochastic general equilibrium models (Ruge-Murcia, 2012)
- Textbook treatments
- Train (2003), Adda and Cooper (2003) and Davidson and MacKinnon (2004)
- Practioner's guide
- https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93

