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Recap of MSL

> Last week Francesco introduced us maximum simulated liklihood (MSL)

» MSL is MLE except that simulated probabilities replace true probabilities

> Recall,
N
SL(O|x) = F(x]0) = [ Pi (xi; 0)
i=1
N
SLL(0]x) = log f(x|0) =) " log P; (xi: 0
i=1

Oumst € arg max SL(0]x) < Ouist € arg max SLL(6]x)
0 0

where P; is a simulated approximation to P;
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An undesirable property

» Suppose P; is an unbiased simulator of P;i(0)
> Since the log operator is non-linear, logP; is not unbiased for logP;(f)
> Bias in logP; = bias in Oys;

» Bias diminishes with simulation draws (R), but for a fixed R, the estimator is biased
» For fixed R, 05 is inconsistent

» Is there an alternative simulated estimator that is consistent for fixed R?
» Drum roll...
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Method of simulated moments (MSM)

» MSM is GMM but it replaces the model moments with simulated moments
» MSM is to GMM what MSL was to MLE

» MSM can be used to estimate likelihoods, and it will attain the goal of being
consistent for fixed R
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Let’s first refresh our memory of GMM

» GMM estimates parameters by minimizing distance btw model and data moments
» 1(x]|0) Model moments under parameter 6

» 1(x) Same moment calculated from data x
D = arg min|u(x16) ~ ()|

» Estimator depends on choice of distance measure
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Motivation for method of simulated moments (MSM)

» Roadblocks to GMM
» Calculating the moments is too cumbersome
> Ex. Multiple integrals over nonlinear functions (McFadden (1989))
» Model includes a latent variable
> Laroque and Salanié (1993)
» No analytic representation exists

» MSM to the rescuel!
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MSM overview

1. Generate simulated datasets
» For some choice of 6, simulate the model data R times X = {%q, ..., %, ..., X }
» One simulation is one dataset with as many obs as the observed sample

2. Calculate associated moments for the simulated data

pR(510) = & 3 m( 1)

w

Compute moments for observed data p(x)
4. Calculate the distance between simulated and observed moments

Ry A
7 (%]6) = p(x)]|
5. Search over § to minimize the distance calculcated in step 4

Omsm = arg min 1R (%10) — p(x)|
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Practioner’s notes

» Random draws: When simulating, you want random draws to be held constant
so the only thing changing in the minimization problem is the value of the vector
of parameters

» Normalizing moments: Most common distance measure is L? norm. To avoid

unintended moment weighting due to units, convert differences in moments to
percent deviations

> e(X,x]0) = W referred to as the "moment error function”
» Then,

Omsn == arg min e(X, x|0) We(X, x|0)
0
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Comparison to MSL

» Consistency: MSM wins
> P,(6) enters linearly so if P,(f) is unbiased = MSM is unbiased
» Since there is no simulation bias, MSM is consistent even when R is fixed
» Efficiency: MSL wins
> MSM is less efficient than MSL
> Recall that GMM s less efficient unless ideal instruments (scores) are used

» Scores are a function of true InP,(6)

» In summary, both approaches can be justified (See Adda and Cooper (2003))
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Limitations to MSM

» Researcher must make following choices:
» Which moments to use
» Number of simulations
» Weighting matrix, W
» Optimization algorithm
» It is not well-understood how these choices affect performance of MSM (See
Eisenhauer, Heckman, and Mosso (2015)
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A Simple Example: Mixed Logit (again!)

Let us first consider the simple logit case where i € {1,.., N} people choose from
Jj€{1,...,J} alternatives:

X8
Vi=XjB+e; with e~ TIEV, where Pi(Xjlf) = =
>k &’
We could estimate 6 = 3 using GMM, where we use the implied choice probabilities as

moments:

Ocmm = arg min [ZZ ( P(Xi|0) )ZU} [ZZ ( XMQ))Z,J

GMM encompasses the I\/IaX|mum Likelihood Estimator, Where we can use the FOC of
the log-likelihood as the moment:

X . . OLL(O|x
Op € arg maxzz Djjlog P;(Xj|0) < Ocmm := argamln Ha(a‘)H
i=1 j=0
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A Simple Example: Mixed Logit (again!)

However, with random coefficients, the choice probabilities might not have a closed
form solution:

Vij = X;Bi+ej withej~ T1IEV and B ~ f(;6)

Then, we have that:

/7
eXif

P(Dj = 1|X;;;0) = S, X

f(B:)dBi
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A Simple Example: Mixed Logit (again!)

Following the same procedure as in Maximum Simulated Likelihood, we approximate
P(Dj;|Xjj; ) through simulation:

1. Draw R > 0 independent draws 3" from f((;6)

2. Compute the choice probability as:

R X 6"

PiXG10) = 5 D =

— Z eXIkIBr

Then, the Method of Simulated Moments estimator of 8 is given by:

Onrsm == arg min [ZZ (D3 = Pi(x310) )zu} WR[ZZ (D35 = Pi(x310)) 2]
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A Simple Example: Mixed Logit (again!)

Remember, in the Maximum Simulated Likelihood case, the estimator of 8 was given
by:
Opse := argmax SLL(0|x)
0

where
SLL(B|x) = ZZ D;; log P(x|6)
i=1 j=0

» Question: Does MSM encompass MSL in this case? If the likelihood does not
have a closed form solution, we can't use the first order condition as a moment in
the MSM.
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The Weighting Matrix Wg

» Optimal weighting matrix: Smallest possible asymptotic variance of §(W).

» The optimal weighting matrix is the inverse variance covariance matrix of the
moments at the optimal moments.

> If e(X,x|0) is the moment error function, then:

Onism = arg min e(X, x|0)’ We(X, x|0)
6

Wopt — <%e()?, X’@O)e()?7 X’90),>_

» When R increases to infinity = the variance of the MSM estimator is the same
as the variance of the GMM estimator
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The Weighting Matrix Wgk: Two-step estimator

1. Use W =1 to estimate a first-step SMM estimator for 6:

01 = argmin e(%, x|0)'le(X, x|0)
0

2. Using 61, estimate W:

P 1 A ~ -1
W(lr) = (5 e(%: xl01)e(%. xI61)')
3. Lastly, re-estimate the MSM estimator using the optimal two-step weighting

matrix.
0> = argmin e(X, x|0) W(61)e(%, x|0)
0

> 0, is called the two-step MSM estimator

> |If we would iterate over this procedure until W1 is very close to W;: Iterated
variance covariance estimator of W
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Another Example: Competition between Walmart and Kmart

» Paper: What Happens When Walmart Comes to Town by Panle Jia (ECMA

2008)

Consider two chains competing in M markets: Kmart and Walmart. Each chain faces
the following problem:

v

M
D;,
My = [D (iX im+ 0;iDjm + dji )}

Xm: market characteristics
Ni.m: firm and market specific profit shock

0;jD; m: My profits are affected in market m if my competitor decides to enter
market m

D; . ) ) .
3i > Z":: The decision to open a store in market m increases the profits on other
markets through the chain effect.
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Another Example: Competition between Walmart and Kmart

We want to estimate 6 = (5;, §;, 6;i) where i € {Walmart, Kmart}
» This is a very complicated problem!
» There is no close solution for the equilibrium objects of this economy.
P Jia proposed a complicated algorithm to determine the equilibrium.
> MSM gives the flexibility necessary to estimate 6, she uses the following moments:

» Total number of Kmart stores and Walmart stores

» Market structure: Number of markets where only one chain enters, where both enters
» Chain equilibrium profits

» Interaction between market characteristic's and equilibrium objects
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Use of MSM and further resources

» Applications
» Models of job search (Flinn and Mabli, 2008)
» Educational and occupational choices (Adda et al., 2011, 2013)
» Household choices (Flinn and Del Boca, 2012)
» Stochastic volatility models (Andersen et al., 2002; Raknerud and Skare, 2012)
» Dynamic stochastic general equilibrium models (Ruge-Murcia, 2012)
> Textbook treatments
> Train (2003), Adda and Cooper (2003) and Davidson and MacKinnon (2004)
» Practioner’s guide
> https://notes.quantecon.org/submission /5b3db2ceb9eab00015b89f93
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