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Recap of MSL

I Last week Francesco introduced us maximum simulated liklihood (MSL)

I MSL is MLE except that simulated probabilities replace true probabilities

I Recall,

SL(θ|x) = f̌ (x |θ) =
N∏
i=1

P̌i (xi ; θ)

SLL(θ|x) = log f̌ (x |θ) =
N∑
i=1

log P̌i (xi ; θ)

θ̂MSL ∈ arg max
θ̃

SL(θ̃|x)⇐⇒ θ̂MSL ∈ arg max
θ̃

SLL(θ̃|x)

where P̌i is a simulated approximation to Pi
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An undesirable property

I Suppose P̌i is an unbiased simulator of Pi (θ)

I Since the log operator is non-linear, logP̌i is not unbiased for logPi (θ)

I Bias in logP̌i =⇒ bias in θMSL

I Bias diminishes with simulation draws (R), but for a fixed R, the estimator is biased
I For fixed R, θMSL is inconsistent

I Is there an alternative simulated estimator that is consistent for fixed R?
I Drum roll...
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Method of simulated moments (MSM)

I MSM is GMM but it replaces the model moments with simulated moments

I MSM is to GMM what MSL was to MLE

I MSM can be used to estimate likelihoods, and it will attain the goal of being
consistent for fixed R
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Let’s first refresh our memory of GMM

I GMM estimates parameters by minimizing distance btw model and data moments

I µ(x |θ) Model moments under parameter θ

I µ(x) Same moment calculated from data x

θ̂GMM := arg min
θ
||µ(x |θ)− µ(x)||

I Estimator depends on choice of distance measure
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Motivation for method of simulated moments (MSM)

I Roadblocks to GMM
I Calculating the moments is too cumbersome

I Ex. Multiple integrals over nonlinear functions (McFadden (1989))

I Model includes a latent variable
I Laroque and Salanié (1993)

I No analytic representation exists

I MSM to the rescue!
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MSM overview

1. Generate simulated datasets
I For some choice of θ̂, simulate the model data R times x̃ = {x̃1, ..., x̃r , ..., x̃R}
I One simulation is one dataset with as many obs as the observed sample

2. Calculate associated moments for the simulated data

µR(x̃ |θ̂) =
1

R

∑
r

m(x̃r |θ̂)

3. Compute moments for observed data µ(x)

4. Calculate the distance between simulated and observed moments

||µR(x̃ |θ̂)− µ(x)||

5. Search over θ̂ to minimize the distance calculcated in step 4

θ̂MSM := arg min
θ
||µR(x̃ |θ)− µ(x)||
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Practioner’s notes

I Random draws: When simulating, you want random draws to be held constant
so the only thing changing in the minimization problem is the value of the vector
of parameters

I Normalizing moments: Most common distance measure is L2 norm. To avoid
unintended moment weighting due to units, convert differences in moments to
percent deviations
I e(x̃ , x |θ) := m̂(x̃|θ)−m(x)

m(x) referred to as the ”moment error function”
I Then,

θ̂MSM := arg min
θ

e(x̃ , x |θ)′We(x̃ , x |θ)
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Comparison to MSL

I Consistency: MSM wins
I P̌n(θ) enters linearly so if P̌n(θ) is unbiased =⇒ MSM is unbiased
I Since there is no simulation bias, MSM is consistent even when R is fixed

I Efficiency: MSL wins
I MSM is less efficient than MSL

I Recall that GMM is less efficient unless ideal instruments (scores) are used
I Scores are a function of true lnPn(θ)

I In summary, both approaches can be justified (See Adda and Cooper (2003))
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Limitations to MSM

I Researcher must make following choices:
I Which moments to use
I Number of simulations
I Weighting matrix, W,
I Optimization algorithm

I It is not well-understood how these choices affect performance of MSM (See
Eisenhauer, Heckman, and Mosso (2015)
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A Simple Example: Mixed Logit (again!)

Let us first consider the simple logit case where i ∈ {1, ..,N} people choose from
j ∈ {1, ..., J} alternatives:

Vij = X ′ijβ + εij with εij ∼ T1EV , where Pj(Xij |β) =
eX

′
ijβ∑

k e
X ′
ikβ

We could estimate θ = β using GMM, where we use the implied choice probabilities as
moments:

θ̂GMM := arg min
θ

[ N∑
i

J∑
j

(
Dij − P(Xij |θ)

)
zij

]′
W
[ N∑

i

J∑
j

(
Dij − P(Xij |θ)

)
zij

]
GMM encompasses the Maximum Likelihood Estimator, where we can use the FOC of
the log-likelihood as the moment:

θ̂ML ∈ arg max
θ

N∑
i=1

J∑
j=0

Dij logPj(Xij |θ)︸ ︷︷ ︸
=LL(θ|x)

⇐⇒ θ̂GMM := arg min
θ
||∂LL(θ|x)

∂θ
||
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A Simple Example: Mixed Logit (again!)

However, with random coefficients, the choice probabilities might not have a closed
form solution:

Vij = X ′ijβi + εij with εij ∼ T1EV and βi ∼ f (β; θ)

Then, we have that:

P(Dij = 1|Xij ; θ) =

∫
eX

′
ijβ∑

k e
X ′
ikβ

f (βi )dβi
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A Simple Example: Mixed Logit (again!)

Following the same procedure as in Maximum Simulated Likelihood, we approximate
P(Dij |Xij ; θ) through simulation:

1. Draw R � 0 independent draws βr from f (β; θ)

2. Compute the choice probability as:

P̌ j(Xij |θ) =
1

R

R∑
r=1

eX
′
ijβ

r∑
k e

X ′
ikβ

r

Then, the Method of Simulated Moments estimator of θ is given by:

θ̂MSM := arg min
θ

[ N∑
i

J∑
j

(
Dij − P̌ j(Xij |θ)

)
zij

]′
WR

[ N∑
i

J∑
j

(
Dij − P̌ j(Xij |θ)

)
zij

]
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A Simple Example: Mixed Logit (again!)

Remember, in the Maximum Simulated Likelihood case, the estimator of θ was given
by:

θ̂MSL := arg max
θ

SLL(θ|x)

where

SLL(θ|x) =
N∑
i=1

J∑
j=0

Dij log P̌(x |θ)

I Question: Does MSM encompass MSL in this case? If the likelihood does not
have a closed form solution, we can’t use the first order condition as a moment in
the MSM.
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The Weighting Matrix WR

I Optimal weighting matrix: Smallest possible asymptotic variance of θ(W ).

I The optimal weighting matrix is the inverse variance covariance matrix of the
moments at the optimal moments.

I If e(x̃ , x |θ) is the moment error function, then:

θ̂MSM := arg min
θ

e(x̃ , x |θ)′We(x̃ , x |θ)

W opt =
( 1

N
e(x̃ , x |θ0)e(x̃ , x |θ0)′

)−1
I When R increases to infinity =⇒ the variance of the MSM estimator is the same

as the variance of the GMM estimator
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The Weighting Matrix WR : Two-step estimator

1. Use W = I to estimate a first-step SMM estimator for θ:

θ̂1 = arg min
θ

e(x̃ , x |θ)′Ie(x̃ , x |θ)

2. Using θ1, estimate Ŵ :

Ŵ (θ̂1) =
( 1

N
e(x̃ , x |θ̂1)e(x̃ , x |θ̂1)′

)−1
3. Lastly, re-estimate the MSM estimator using the optimal two-step weighting

matrix.
θ̂2 = arg min

θ
e(x̃ , x |θ)′Ŵ (θ̂1)e(x̃ , x |θ)

I θ̂2 is called the two-step MSM estimator

I If we would iterate over this procedure until Ŵi+1 is very close to Ŵi : Iterated
variance covariance estimator of W
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Another Example: Competition between Walmart and Kmart

I Paper: What Happens When Walmart Comes to Town by Panle Jia (ECMA
2008)

Consider two chains competing in M markets: Kmart and Walmart. Each chain faces
the following problem:

max
D1,...,DM

Πi =
M∑

m=1

[
Dm

(
βiXm + ηi ,m + δijDj ,m + δii

∑
l 6=m

Di ,l

Zml

)]
I Xm: market characteristics

I ηi ,m: firm and market specific profit shock

I δijDj ,m: My profits are affected in market m if my competitor decides to enter
market m

I δii
∑ Di,l

Zml
: The decision to open a store in market m increases the profits on other

markets through the chain effect.
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Another Example: Competition between Walmart and Kmart

We want to estimate θ = (βi , δij , δii ) where i ∈ {Walmart,Kmart}
I This is a very complicated problem!

I There is no close solution for the equilibrium objects of this economy.

I Jia proposed a complicated algorithm to determine the equilibrium.
I MSM gives the flexibility necessary to estimate θ, she uses the following moments:

I Total number of Kmart stores and Walmart stores
I Market structure: Number of markets where only one chain enters, where both enters
I Chain equilibrium profits
I Interaction between market characteristic’s and equilibrium objects
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Use of MSM and further resources

I Applications
I Models of job search (Flinn and Mabli, 2008)
I Educational and occupational choices (Adda et al., 2011, 2013)
I Household choices (Flinn and Del Boca, 2012)
I Stochastic volatility models (Andersen et al., 2002; Raknerud and Skare, 2012)
I Dynamic stochastic general equilibrium models (Ruge-Murcia, 2012)

I Textbook treatments
I Train (2003), Adda and Cooper (2003) and Davidson and MacKinnon (2004)

I Practioner’s guide
I https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93
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