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What is Maximum (Non-Simulated) Likelihood?

• (X1 ∼ P1, . . . ,XN ∼ PN) is a collection of random vectors

• Not necessarily independent and not necessarily identically distributed

• Each Pi depends on some common parameter vector θ ∈ Θ

• For convenience, assume that (X1 ∼ P1, . . . ,XN ∼ PN) are independent

• The likelihood function of θ is the joint distribution of (X1, . . . ,XN) under θ and evaluated at x :

L(θ|x) = f (x |θ) =
N∏
i=1

Pi (xi ; θ)

• The log-likelihood function of θ is

LL(θ|x) = log f (x |θ) =
N∑
i=1

logPi (xi ; θ)
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What is Maximum (Non-Simulated) Likelihood?

• Then a maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ̃

L
(
θ̃|x

)
⇐⇒ θ̂ML ∈ argmax

θ̃
LL

(
θ̃|x

)
• What if there is no closed form for {Pi (·; θ)}Ni=1?

• Those masses/densities could be approximated with simulation...
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What is Maximum Simulated Likelihood?

• The simulated likelihood function of θ is a simulated approximation to the joint distribution of
(X1, . . . ,XN) under θ and evaluated at x :

SL(θ|x) = qf (x |θ) =
N∏
i=1

qPi (xi ; θ)

where qPi is a simulated approximation to Pi

• The simulated log-likelihood function of θ is

SLL(θ|x) = log qf (x |θ) =
N∑
i=1

log qPi (xi ; θ)

• Then a maximum simulated likelihood estimator of θ is

θ̂MSL ∈ argmax
θ̃

SL
(
θ̃|x

)
⇐⇒ θ̂MSL ∈ argmax

θ̃
SLL

(
θ̃|x

)
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A Simple Example: Mixed Logit

• Consider the indirect utility function with random coefficients:

Vij = X ′
ijβi + εij with βi ∼ f (β; θ)

• εij
iid∼ T1EV, so individual choice probabilities (conditional on βi ) are

P (Xij) |βi =
eX

′
ijβi∑J

k=0 e
X ′
ikβi

• βi is random, so let us integrate it out:

P (Xij ; θ) =

∫
eX

′
ijβi∑J

k=0 e
X ′
ikβi

f (βi ; θ) dβi
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A Simple Example: Mixed Logit

• Oh no! That integral may not have a closed form!

• But wait, if we assumed f (β; θ), we could simulate it...

1 Draw βr from f (β; θ)

2 Compute P (Xij) |βr

3 Repeat (1) and (2) R times, with R ≫ 0

4 Compute the simple average of {P (Xij) |βr}Rr=1

• A simulated approximation to the individual choice probability is

qP (Xij ; θ) =
1

R

R∑
r=1

eX
′
ijβ

r∑J
k=0 e

X ′
ikβ

r
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A Simple Example: Mixed Logit

• Almost done...

• Now we can compute the simulated log likelihood:

SLL(θ|x) =
N∑
i=1

J∑
j=0

Dij log qP (Xij ; θ)

where Dij = 1 if individual i chose good j , and 0 otherwise

• A maximum simulated likelihood estimator of θ is

θ̂MSL ∈ argmax
θ̃

SLL
(
θ̃|x

)
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• Consider a dynamic program with finite horizon, t ∈ {0, . . . ,T}

• In each period, agents choose one of K possible alternatives

• Alternatives are mutually exclusive, so decisions are

dk(t) =

{
0 if k is not chosen at time t

1 if k is chosen at time t

• A current period reward is associated with choice k at time t, Rk(t)

• The state space at time t is S(t)
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

The value function depends on both state space and time horizon:

V (S(t), t) = max {V1 (S(t), t) , . . . ,VK (S(t), t)}

where each choice value function obeys the Bellman equation

Vk (S(t), t) =

{
Rk(S(t), t) + δE [V (S(t + 1), t + 1) |S(t), dk(t) = 1] if t < T

Rk(S(t), t) if t = T
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• Labor supply is discrete: zero (0), part-time (1), full-time (2)

• Per-period reward functions are given by

R0(S(t), t) = γ + ε0t

R1(S(t), t) = w1 (xt) + ε1t

R2(S(t), t) = w2 (xt) + ε2t

where γ is a constant and w are wage offers

• The state space is
S(t) = {xt , ε0t , ε1t , ε2t}

where xt denotes experience and εt are shocks to the value of non-market time or labor
productivity shocks
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• The state space evolves according to

xt+1 = xt + 0.5× d1(t) + 1× d2(t)

f (εt+1|S(t), dk(t)) = f (εt+1|xt , dk(t))

• Working:

• part time increases the experience stock by 0.5

• full time increases the experience stock by 1

• We also assume shocks are serially independent

• Issues become even more clear if you relax this assumption

Francesco Ruggieri Maximum Simulated Likelihood April 16, 2020 11



MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• Recall that the value function is

V (S(t), t) = max {V0 (S(t), t) ,V1 (S(t), t) ,V2 (S(t), t)}

• Then, at time t − 1 and for all choices k , agents must compute the expected maximum of the
choice-specific value functions

E [max {V0 (S(t), t) ,V1 (S(t), t) ,V2 (S(t), t)} |S(t − 1), dk(t − 1)]

where E [·] is a three-variate multiple integral with respect to the joint distribution of ε
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• Solve the model by backward recursion

• At time T there is no future, so choice is based on per-period reward

• At time T − 1, the expected maximum must be computed for all k possible choices and all
possible realizations of xT−1

• When you reach time 0, you need to have computed all possible choice-specific value functions
(paths of possible state realizations)!

• This becomes even worse if the ε shocks are not serially independent

• How to avoid computing all of these three-variate multiple integrals with no closed form?
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• Before finding out, one step back...

• Why are we doing this?

• Our goal is NOT to solve the model per se, but solve the model in order to estimate structural
parameters, for instance δ and γ

• In practice, we have a panel with observed labor supply choices

• If someone with 9 years of experience worked part time in t = 2007

P (d1(t) = 1,w1t |xt = 9) = P (w1t ,V1(S(t), t) ≥ V0(S(t), t),V1(S(t), t) ≥ V2(S(t), t))

• This is one term in the likelihood function!
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MSL and Dynamic Discrete Choice: Keane & Wolpin (1994)

• If we could compute integrals, we would multiply those P (·) across i and over t, and obtain the
maximum likelihood estimator

• But since we cannot, Keane and Wolpin (1994) proposes a method based on simulation

1 Take a draw r from the joint distribution of ε ≡ (ε0, ε1, ε2)

2 Calculate V r
0 (S(t), t),V

r
1 (S(t), t),V

r
2 (S(t), t)

3 Pick the maximum among V r
0 (S(t), t),V

r
1 (S(t), t),V

r
2 (S(t), t)

4 Repeat (1)–(3) R times, with R ≫ 0

5 Compute the simple average of R maximum choice-specific values

6 Perform (1)–(5) in each t and for every possible S(t)

7 Construct the simulated log likelihood

8 Derive the maximum simulated likelihood estimator
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The End

Thank you!
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