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Abstract

We propose a structural approach to extrapolate average partial effects away from

the cutoff in regression discontinuity designs (RDDs). Our focus is on applications that

exploit closely contested school district referenda to estimate the effects of changes in

education spending on local economic outcomes. We embed these outcomes in a spatial

equilibrium model of local jurisdictions in which fiscal policy is determined by majority

rule voting. This integration provides a microfoundation for the running variable—the

share of voters who approve a ballot initiative—and enables identification of structural

parameters using RDD coefficients. We then leverage the model to simulate the effects

of counterfactual referenda over a broad range of proposed spending changes. These

scenarios imply realizations of the running variable away from the threshold, allowing

extrapolation of RDD estimates to nonmarginal referenda. Applying the method to

school expenditure ballot measures in Wisconsin, we document substantial heterogene-

ity in housing price capitalization across the approval margin.
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1 Introduction

Regression discontinuity designs (RDDs) are widely used to estimate causal parameters in

settings where the probability of exposure to a treatment changes discontinuously at a known

deterministic threshold. Under a mild continuity assumption, RDDs nonparametrically point

identify a cutoff-specific average treatment effect (ATE) or local average treatment effect

(LATE), depending on whether this probability shifts from zero to one or by a smaller

amount within the unit interval, respectively (Hahn, Todd and Van der Klaauw 2001). A

well-known limitation of RDDs concerns their external validity: the average effect identified

for agents at the margin between different levels of treatment exposure may not generalize

to nonmarginal units, potentially narrowing the policy relevance of the empirical analysis.

To address this limitation, the existing literature has proposed a variety of approaches

that can be grouped into two main strands (Cattaneo et al. 2021). The first strand has

developed methods for extrapolating effects away from the threshold imposing restrictions

on the joint distribution of the outcome, the running variable, and one or more cutoffs (Dong

and Lewbel 2015, Bertanha and Imbens 2020, Cattaneo et al. 2021). The second strand has

incorporated information from auxiliary variables observed alongside the RD design but not

intrinsic to it (Mealli and Rampichini 2012, Wing and Cook 2013, Angrist and Rokkanen

2015, Rokkanen 2015). While theoretically valid for extrapolating treatment effects, these

statistical approaches offer limited traction for policy-relevant counterfactuals that require

manipulating the underlying determinants of the running variable and the outcome.

In this paper, we propose a structural approach that hinges on developing an economic

model of the running variable. We focus on the empirically relevant setting of school expen-

diture referenda, which local public finance and education economists frequently exploit to

estimate the effects of school capital investments on student test scores and housing prices

(Cellini, Ferreira and Rothstein 2010, Darolia 2013, Hong and Zimmer 2016, Martorell,

Stange and McFarlin 2016, Abott et al. 2020, Baron 2022, Enami, Reynolds and Rohlin

2023, Baron, Hyman and Vasquez 2024, Biasi, Lafortune and Schönholzer 2025). School dis-

tricts in which a ballot measure is narrowly approved or rejected may systematically differ

from those in which a similar initiative passes or fails by a large margin, due to different
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political preferences, housing market characteristics, or the prior burden of property taxes.

Consequently, the average treatment effect at the cutoff may not coincide with the same

parameter away from the threshold.

Our extrapolation strategy proceeds in two steps. First, we interpret the average partial

effects identified by the RDD within a spatial equilibrium model that jointly determines

population, housing prices, tax rates, and school spending across local jurisdictions. In this

model, households vote on their preferred combination of school spending and property taxes,

providing an economic foundation for the running variable: the share of voters who approve

a ballot initiative to increase education expenditures. By mapping the RDD coefficients

to the model, we recover structural parameters consistent with the reduced-form treatment

effects at the cutoff. In the second step, we leverage the model to simulate counterfactual

referenda spanning a broad range of proposed spending changes. These policy alternatives

generate realizations of the running variable away from the threshold, enabling extrapolation

of average partial effects across the approval margin.

We apply our method to revisit the capitalization of school expenditure authorizations

into housing prices in the years following referendum approval, a margin long studied in pub-

lic finance as a measure of how prospective homebuyers value the tradeoff between improved

public services and higher property taxes1. Our empirical analysis focuses on Wisconsin,

where school district referenda are regularly used to authorize both operational and capital

spending (Baron 2022). In the first part of the paper, we estimate that the average arc

elasticity of housing prices with respect to education expenditures is approximately equal to

one at the referendum approval threshold. In the second part, we apply our extrapolation

strategy, grounded in a spatial equilibrium framework, to estimate capitalization effects for

referenda that were either decisively approved or rejected. We find substantial heterogeneity

away from the cutoff. To the right of the threshold, the average elasticity rises steadily,

implying that the positive capitalization effect estimated at the margin extends to referenda

backed by a larger share of voters. To the left, the elasticity declines and becomes negative

for ballot measures that garnered limited support. This pattern indicates that some rejected

proposals would have weakened local housing demand through negative net sorting, driven

1See Ross and Yinger (1999) for a review of the earlier literature.
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primarily by outmigration of households with a relatively low willingness to pay for enhanced

education services. Taken together, these results suggest that housing market responses to

locally determined changes in government spending may vary systematically with the degree

of voter agreement over the proposed policies.

We view the economic approach developed in this paper as particularly useful for empir-

ical settings in which the running variable is not policy-relevant and lacks a clear interpre-

tation in terms of economic primitives. In our application, the approval vote share reflects

a complex aggregation of individual preferences over education spending, shaped by local

sorting and housing market dynamics. Because manipulating the vote share does not corre-

spond to a well-defined policy intervention, we instead extrapolate average effects away from

the cutoff by shifting a policy lever: the proposed change in government spending. This

variable affects both the referendum outcome and the endogenous variables in the model,

making it a valid basis for extrapolation. A salient feature of our approach is that it allows

for a clear separation between the variation used to identify average effects at the cutoff and

the variation exploited for extrapolation. While the running variable may be policy-relevant

in some contexts, this distinction becomes essential when it is not—as in our case.

Our paper contributes to three distinct but related literatures. First, we propose a method

for extrapolating average partial effects away from the cutoff in regression discontinuity

designs. Departing from existing statistical approaches, we microfound the running variable

by embedding it in a model of economic behavior, thereby establishing a formal link between

RDD coefficients and structural parameters. In this respect, our paper is related to Mehta

(2019), which develops a framework for extrapolation in settings where the cutoff is chosen by

a planner seeking to maximize the net benefits of a policy intervention. Our approach differs

in that we specify a structural model in which a policy variable can be explicitly manipulated,

rather than assuming that a feature of the RDD reflects an optimal design choice by the

policymaker. Our framework enables researchers to estimate causal parameters associated

with a specified range of counterfactual changes in education spending.

Second, we contribute to the literature that links program evaluation methods with mod-

els of economic behavior to recover policy-relevant parameters (Heckman and Vytlacil 2001,

Heckman and Vytlacil 2005, Heckman and Vytlacil 2007, Mogstad, Santos and Torgovitsky
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2018, Walters 2018, Rose and Shem-Tov 2021, Mogstad, Torgovitsky and Walters 2024) and

welfare measures (Chetty 2009, Suárez Serrato and Zidar 2016, Kleven 2021, Tebaldi, Tor-

govitsky and Yang 2023, Lobel 2025). Third, we extend prior work in public finance that

estimates the effects of local changes in government spending on housing prices (Oates 1969,

Gyourko and Tracy 1989, Reback 2005, Hilber and Mayer 2009, Cellini, Ferreira and Roth-

stein 2010, Hilber 2017) and population composition (Ferreyra 2007, Banzhaf and Walsh

2008, Abramitzky 2009, Biasi, Lafortune and Schönholzer 2025). We show that the capi-

talization of education spending into housing prices varies across the approval margin, im-

plying that conclusions drawn from marginally approved referenda may not generalize to

nonmarginal settings. This underscores the value of structural extrapolation for evaluating

counterfactuals of practical policy interest.

The remainder of the paper is structured as follows. Section 2 provides institutional

background on the use of local referenda in U.S. school districts and reviews how prior

research in local public finance has leveraged these settings to estimate causal parameters.

In Section 3, we implement a regression discontinuity design to estimate the average effect

of marginally approved school expenditure authorizations on housing prices in Wisconsin.

Section 4 introduces a spatial equilibrium model in which residents select into participation

in school funding referenda. In Section 5, we establish a formal link between the reduced-

form RDD estimates and the structural parameters of the model, providing conditions under

which these parameters are identified. Section 6 describes how the model structure can be

used to extrapolate average effects away from the threshold. In Section 7, we present a

Monte Carlo simulation that assesses the finite-sample performance of our approach for

recovering the model’s structural parameters from RDD coefficients. Section 8 applies the

proposed extrapolation method to estimate the capitalization effects of expenditure changes

for nonmarginal referenda in Wisconsin. Section 9 concludes.

2 Background

School districts fund a significant portion of their operations with revenue from property

taxes, accounting for more than 80 percent of their receipts from local sources (National
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Center for Education Statistics 2023). However, state constitutions often impose caps on

tax rates, annual growth in tax revenue, or annual growth in assessed property values,

thereby constraining the extent to which school districts and other local governments can

tax their base (Lincoln Institute of Land Policy and George Washington Institute of Public

Policy 2025). In several states, school districts can bypass these constraints if a majority

of voters approves a spending initiative in a local referendum. These ballot initiatives are

often intended to fund large capital expenditures, such as school construction or renovation

projects (Fischer, Duncombe and Syverson 2023). If a referendum is approved, a school

district will typically issue general obligation bonds and repay the principal and interest

over a predetermined number of years using extra property tax revenue.

Beginning with the seminal contribution of Cellini, Ferreira and Rothstein (2010), re-

searchers in empirical public finance and education economics have leveraged school bond

referenda to estimate the effects of increased school expenditures on housing prices, student

achievement, and other educational outcomes. Identifying causal parameters in this context

is inherently challenging: school district property tax rates are likely to be systematically

related to unobserved determinants of both educational and housing market outcomes. For

example, households that place a high value on public education may be more likely to sort

into well-funded districts (Poterba 1997) and to invest more heavily in their children’s aca-

demic success outside of school (Guryan, Hurst and Kearney 2008). Similarly, cross-district

heterogeneity in property tax rates may reflect unobserved differences in housing market fun-

damentals: areas with better natural amenities may both command higher housing prices

and enable greater fiscal extraction by local governments (Brueckner and Neumark 2014,

Diamond 2017). Because property tax rates are equilibrium outcomes of collective choice,

simple comparisons of conditional means generally lack a causal interpretation. Regression

discontinuity designs that exploit variation in the outcome of school spending referenda ad-

dress these concerns by comparing jurisdictions that narrowly approved or narrowly rejected

their respective ballot measures.

In this paper, we focus on the effect of school district referendum approval on housing

prices. Research in local public finance has long recognized that the extent to which property

tax changes are capitalized into housing prices is an informative measure of the efficiency of
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local public goods provision (Bickerdike 1902, Marshall 1948, Oates 1969, Brueckner 1982,

Cushing 1984, Barrow and Rouse 2004, Figlio and Lucas 2004, Cellini, Ferreira and Rothstein

2010, Biasi, Lafortune and Schönholzer 2025). Evidence of positive capitalization following

an expenditure increase is typically interpreted as an indication that prospective homebuyers

value the associated improvement in public services more than the change in the tax burden

required to fund it. Our setting is the state of Wisconsin, where school districts routinely

hold referenda to authorize both operational and capital expenditures (Baron 2022).

3 The Effect of School Expenditure Authorizations on

Housing Prices for Marginally Approved Referenda

In this section, we leverage a regression discontinuity design to estimate the effect of school

expenditure authorizations on housing prices for marginally approved referenda in Wisconsin.

3.1 Data

The Wisconsin Department of Public Instruction collects and publishes comprehensive data

on all school district referenda held in the state since 1990 (Wisconsin Department of Public

Instruction 2025). This dataset includes, among other variables, information on the approval

vote share, which we use as the running variable in the RDD.

To construct the outcome of interest, we follow an approach similar to that of Biasi,

Lafortune and Schönholzer (2025) and Ruggieri (2025). Specifically, we rely on a repeat-

sales house price index developed by Contat and Larson (2024), which covers all Census

tracts located within Core-Based Statistical Areas2 in the United States from 1989 to 2021.

The index is normalized to 100 in 1989 for all tracts, allowing for within-tract temporal

comparisons but not cross-sectional ones. To allow for level comparisons across school dis-

tricts, we incorporate data on the average value of owner-occupied single-family homes at

the Census tract level, as reported in the U.S. Census Bureau’s 2000 Decennial Census3.

2The term “Core-Based Statistical Area” refers collectively to both Metropolitan Statistical Areas and
Micropolitan Statistical Areas (U.S. Census Bureau 2025a).

3The collection of this variable was discontinued beginning with the 2010 Decennial Census.
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For each tract, we compute a calibration factor as the ratio of the 2000 Census home value

to the 2000 value of the house price index from Contat and Larson (2024), and apply this

factor to the full time series of the index. The resulting measure of housing prices allows for

both cross-sectional and intertemporal comparisons. Next, we compute the centroid of each

Census tract and assign it to the corresponding elementary, secondary, or unified school dis-

trict based on the 2010 TIGER/Line shapefiles provided by the U.S. Census Bureau4 (U.S.

Census Bureau 2025b). Finally, for each district, we calculate a population-weighted average

of housing prices across its constituent Census tracts5. This yields the outcome variable used

in the RDD.

Figure 1: Density of the Approval Vote Share Margin

Notes: This figure displays a histogram of the approval vote share margin, defined as the difference between
the share of votes in favor of the proposed expenditure measure and the 50 percent approval threshold, for
3,528 referenda held by Wisconsin school districts between 1990 and 2022.

The matched sample includes 3,528 referenda, of which 58.8 percent were approved.

The average approval vote share margin is 2.22 percentage points, with an average of 10.5

percentage points among approved referenda and –9.59 percentage points among those that

were rejected. Figure 1 displays a histogram of the approval vote share margin. To assess

4We use 2010 tract and school district boundaries because the house price index constructed by Contat
and Larson (2024) is based on 2010 Census tracts.

5Although we compute population-weighted averages, this choice is not consequential, as Census tracts
are designed to contain approximately 4,000 inhabitants (U.S. Census Bureau 2025a).
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the validity of the design, we test for discontinuities in the density of the running variable

at the cutoff using the local polynomial density estimators developed by Cattaneo, Jansson

and Ma (2020). The null hypothesis of equal densities on either side of the cutoff is not

rejected (p-value = 0.82), suggesting that manipulation of the running variable around the

threshold is unlikely to be a concern in this setting.

3.2 Identification and Estimation of Average Effects at the Cutoff

Let Pj and Sj denote, respectively, the housing price and the approval vote share margin

in school district j. Each referendum proposes a deterministic and binding expenditure

increase ∆Gj > 0, which is known to residents prior to voting. Define the approval indicator

as Dj ≡ I [Sj > 0], where Dj = 1 if the referendum is approved. Initially, we adopt a

potential outcomes model in which Pj (d) denotes the potential housing price in district j

under treatment status d ∈ {0, 1}.

Our primary target parameter is the average treatment effect of referendum approval on

log housing prices at the threshold:

ATE (0) ≡ E [logPj (1)− logPj (0) |Sj = 0] (1)

This parameter is nonparametrically point identified under a standard continuity assumption

(Hahn, Todd and Van der Klaauw 2001).

Assumption 1 (Continuity at the Cutoff) For each d ∈ {0, 1}, the function s 7→

E [logPj (d) |Sj = s] is continuous at s = 0.

Under Assumption 1, ATE (0) is identified via the sharp regression discontinuity estimand

θ (0) ≡ lim
s↓0

E [logPj|Sj = s]− lim
s↑0

E [logPj|Sj = s] (2)

However, θ (0) is difficult to interpret when proposed expenditure changes ∆Gj vary

across referenda. A binary treatment may obscure meaningful variation in the intensity of

the underlying policy intervention. To recover a more interpretable, elasticity-like parameter,

we normalize the sharp RD estimand by the average realized change in expenditures at the

cutoff. Specifically, we consider the variable Dj×∆ logGj, which equals the proposed change
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in log spending for approved referenda and is zero otherwise. Since ∆Gj is known to voters

prior to the election and is binding upon approval, the resulting first stage is deterministic.

The corresponding estimand takes the form of a fuzzy regression discontinuity estimand with

a known first-stage shift:

θG (0) ≡ lims↓0 E [logPj|Sj = s]− lims↑0 E [logPj|Sj = s]

lims↓0 E [Dj ×∆ logGj|Sj = s]
(3)

where the lower-limit expectation in the denominator is omitted, as it equals zero by con-

struction. To interpret this parameter, we redefine potential outcomes as functions of the

realized change in spending, writing Pj (d×∆Gj) for d ∈ {0, 1}. We now adapt the conti-

nuity assumption to this setting.

Assumption 2 (Continuity at the Cutoff) For each d ∈ {0, 1}, the functions s 7→

E [logPj (d×∆Gj) |Sj = s] and s 7→ E [∆ logGj|Sj = s] are continuous at s = 0.

Under Assumption 2, the estimand θG (0) identifies a weighted average of housing price arc

elasticities with respect to proposed changes in school expenditures among jurisdictions at

the approval threshold:

WAVE (0) ≡ E
[
ωj ×

logPj (∆Gj)− logPj (0)

∆ logGj

∣∣∣∣Sj = 0

]
(4)

where weights are defined as ωj ≡ ∆ logGj/E [∆ logGj|Sj = 0], ensuring they integrate to

one at the cutoff. This result is proved in Appendix A.

For estimation, we implement local polynomial regression. Given a random sample{
[Sj, Pj,∆Gj]

′}n
j=1

and a bandwidth hn > 0, let S (hn) = [−hn, hn] be a discontinuity window

implied by realizations of the running variable around the zero cutoff. Let S− (hn) = [−hn, 0)

and S+ (hn) = [0, hn] indicate, respectively, the left and right discontinuity half-windows.

For any outcome A, we estimate intercepts via local linear regression:

[
µ̂
(0)
A+,1 (hn) , µ̂

(1)
A+,1 (hn)

]′
≡ arg min

b0,b1∈R

n∑
j=1

I
[
Sj ∈ S+ (hn)

]
(logAj − b0 − b1Sj)

2 khn (Sj)

[
µ̂
(0)
A−,1 (hn) , µ̂

(1)
A−,1 (hn)

]′
≡ arg min

b0,b1∈R

n∑
j=1

I
[
Sj ∈ S− (hn)

]
(logAj − b0 − b1Sj)

2 khn (Sj)
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where khn (Sj) = (1− |Sj|/hn) /hn is the triangular kernel. Assuming standard regularity

conditions hold (see Assumptions 1 and 2 in Calonico, Cattaneo and Titiunik 2014), we

estimate WAVE (0) with

θ̂G (0, hn) ≡
µ̂
(0)
P+,1 (hn)− µ̂

(0)
P−,1 (hn)

µ̂
(0)
∆G+,1 (hn)

(5)

We compute θ̂G (0, hn) using a bandwidth selected to minimize the estimator’s mean squared

error, following Imbens and Kalyanaraman (2012). To account for estimation with observa-

tions away from the cutoff, we apply standard bias correction and construct nonparametric

confidence intervals with the method developed by Calonico, Cattaneo and Titiunik (2014).

We compute standard errors using the nearest-neighbor variance estimator from the same

paper, adopting the default tuning parameter j∗ = 3.

3.3 Results

We estimate the effect of school district expenditure authorization on housing prices mea-

sured five years after each referendum. Because of the temporal lag between treatment

assignment and outcome measurement, additional referenda may occur during the interven-

ing period. The difficulty of identifying interpretable causal parameters in settings where

jurisdictions are subject to repeated treatment assignments over time was first highlighted by

Cellini, Ferreira and Rothstein (2010) and has since become an important concern in empir-

ical local public finance. A growing body of research in applied econometrics has developed

identification strategies tailored to such environments, commonly referred to as dynamic

regression discontinuity designs (Cellini, Ferreira and Rothstein 2010, Hsu and Shen 2024,

Ruggieri 2025). In this paper, we do not adopt these dynamic RD approaches. Our focus lies

instead on developing a framework to extrapolate average partial effects away from the ap-

proval cutoff. Consequently, we interpret our estimand as an intent-to-treat effect generated

by the discontinuity in the referendum approval margin.

We begin by describing the empirical distribution of log housing prices at the school

district level, conditional on the approval vote margin. Figure 2 displays nonparametric

10



estimates of average housing prices within bins implied by the running variable. The fig-

ure reveals a concave relationship: districts with referenda that are either overwhelmingly

approved or rejected tend to exhibit lower average housing prices relative to those near the

cutoff. To the right of the threshold, average housing prices are modestly higher, consis-

tent with the positive capitalization of marginally approved expenditure authorizations into

property values.

Figure 2: Binned Averages of Log Housing Prices by Approval Vote Share Margin

Notes: This figure displays nonparametric estimates of average log housing prices at the school district
level, binned by the approval vote share margin. Fitted values are obtained from global quadratic regressions
estimated separately on each side of the cutoff. The number and spacing of bins are selected using spacing
estimators, following the data-driven procedure proposed by Calonico, Cattaneo and Titiunik (2015). The
approval vote share margin is defined as the difference between the share of votes in favor of the proposed
expenditure measure and the 50 percent approval threshold. Housing prices are measured five years after
each referendum. The sample comprises 2,122 referenda held by Wisconsin school districts between 1990
and 2015.

We then turn to formally estimating the effect of referendum approval on housing prices.

Panel A of Table 1 reports local linear estimates of ATE(0), the average treatment effect at

the approval threshold. In the baseline specification, marginal approval increases housing

prices by an estimated 10.1 percent over a five-year horizon. Controlling for referendum

year indicators slightly reduces the estimate to 9.7 percent. The inclusion of interaction

indicators between school district type (elementary, secondary, or unified) and referendum

content (operational or capital expenditures) does not meaningfully affect the estimate,
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which rises to 10.5 percent.

Panel B rescales the estimates from Panel A by the average realized change in school

district expenditures at the cutoff, yielding an estimate of the weighted average of arc elas-

ticities defined in equation (4). Across all specifications, a one-percent increase in authorized

school spending—induced by referendum approval—raises housing prices by approximately

one percent over five years.

Table 1: Estimated Effects of Referendum Approval on Housing Prices

(1) (2) (3)

Panel A: Estimates of ATE (0)

Dj 0.101 0.097 0.105
(0.045) (0.039) (0.035)

Panel B: Estimates of WAVE(0)

Dj ×∆ logGj 1.032 0.979 1.064
(0.485) (0.426) (0.386)

Year No Yes Yes
District-Referendum Type No No Yes
Bandwidth 0.097 0.084 0.080

Notes: This table reports local linear estimates of the average effect of approving school district expenditure
referenda on housing prices in Wisconsin from 1990 to 2015. Panel A presents bias-corrected estimates of
the average treatment effect at the cutoff; the corresponding estimand is defined in equation (2). Panel
B presents bias-corrected estimates of a cutoff-specific, weighted average of arc elasticities with respect
to expenditure changes, with the estimand given in equation (3). In both panels, estimation relies on a
triangular kernel, with bandwidths selected to minimize the mean squared error of the estimator (Imbens
and Kalyanaraman 2012), following the procedure developed by Calonico, Cattaneo and Titiunik (2014).
Standard errors are computed using the nearest-neighbor variance estimator proposed by Calonico, Cattaneo
and Titiunik (2014), with the default tuning parameter j∗ = 3. The “Year” and “District-Referendum
Type” rows indicate whether the specification includes referendum year indicators and interaction indicators
between school district type (elementary, secondary, or unified) and referendum content (operational or
capital expenditures), respectively. The sample comprises 2,122 referenda.

Overall, the results indicate that marginally approved referenda lead to a positive capital-

ization of school expenditure authorizations into local housing prices, consistent with prior

evidence from Cellini, Ferreira and Rothstein (2010) and Biasi, Lafortune and Schönholzer

(2025). However, the sign and magnitude of this effect need not generalize to nonmarginal

referenda, potentially limiting the relevance of these estimates for evaluating the welfare im-

plications of changes in school spending. The concave pattern in Figure 2 suggests that ju-
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risdictions with decisive referendum outcomes—whether approvals or rejections—may differ

systematically, in both observable characteristics and unobserved determinants of housing

demand, from those near the cutoff. Because the approval vote share reflects a complex

aggregation of individual preferences over education spending relative to the property tax

burden, we next develop a model of its determinants to ground the extrapolation of average

partial effects in economic fundamentals.

4 An Economic Model of the Running Variable

In this section, we present an economic model of the running variable, i.e., the share of voters

who support a ballot initiative to increase education spending in their school district.

Whether a resident prefers school spending to increase or remain unchanged is likely

determined by several factors. First, the strength of their preferences over public services

relative to housing consumption. Ceteris paribus, a higher valuation of publicly provided

education increases the likelihood that a resident supports the ballot initiative. Second, the

extent to which changes in fiscal policy are capitalized into housing prices, thereby affecting

the attractiveness of the district to potential movers. All else equal, a less elastic housing

supply amplifies the local price response to a change in government spending. Thus, both

household preferences and local housing market conditions shape an individual’s propensity

to support or oppose a referendum. Importantly, this analysis must account for the openness

of school districts: residents from other areas may move in if they value the expenditure

authorization, just as local residents may exit if they do not. This consideration naturally

motivates a spatial equilibrium model with multiple horizontally differentiated locations.

In line with a long tradition of modeling equilibrium across local jurisdictions6, we con-

sider a metropolitan area in which households choose where to live, housing prices adjust

locally, and public goods are provided through majority voting. The model is repeated

static: agents optimize myopically, with no forward- or backward-looking behavior. Each

6See Ellickson 1971, Hamilton 1975, Stiglitz 1977, Westhoff 1977, Brueckner 1979a, Brueckner 1979b,
Brueckner 1979c, Rose-Ackerman 1979, Brueckner 1983, Epple, Filimon and Romer 1984, Epple and Romer
1991, Epple and Platt 1998, Epple and Sieg 1999, Brueckner 2000, Epple, Romer and Sieg 2001, Calabrese
et al. 2006, Epple, Gordon and Sieg 2010, Calabrese, Epple and Romano 2012, Brueckner 2023.
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period yields an allocation of households, government spending, tax rates, and housing prices

across jurisdictions. For notational simplicity, we omit time subscripts throughout.

We consider a unit mass of households indexed by i, each of whom chooses to reside

in one of a discrete set of school districts indexed by j ∈ J , or outside the metropolitan

area altogether. Jurisdiction boundaries are fixed, and the model abstracts from commuting

and the labor market. Income is treated as an endowment, reflecting the assumption that

school fiscal policy does not influence firm location decisions. Consequently, the value of

geographic proximity between residential and workplace locations is subsumed within the

district-specific amenity component of household utility.

4.1 Households

The household residential choice problem builds on the framework of Epple and Platt (1998),

with one important modification. Specifically, we augment households’ utility function with

an additive idiosyncratic preference shock for locations. This assumption aligns with stan-

dard approaches in urban economics that incorporate random utility components in neigh-

borhood choice models (Bayer, Ferreira and McMillan 2007, Ahlfeldt et al. 2015, Almagro

and Domı́nguez-Iino 2025), as well as in models of worker and firm location in public finance

(Busso, Gregory and Kline 2013, Kline and Moretti 2014, Suárez Serrato and Zidar 2016,

Fajgelbaum et al. 2019) and labor economics (Moretti 2011, Moretti 2013, Diamond 2016,

Diamond and Gaubert 2017).

In addition, we abstract from the vertically differentiated structure of local governments

that characterizes most U.S. metropolitan areas (Berry 2008, Berry 2009, Ruggieri 2024).

This simplification is justified by our focus on school districts and the impact of their fiscal

policy changes. Accordingly, we assume that other jurisdictions providing non-school public

services do not adjust their policies in response to changes in school district expenditures.

In district j, households’ utility is log-additive in exogenous location amenities Aj, hous-

ing floor space H, a composite numeraire consumption good X, and public K-12 education

expenditures Gj. To capture congestion in the consumption of public education services, we

follow Fajgelbaum et al. (2019) and scale Gj by N
χ
j , where Nj denotes the mass of residents in

district j and χ ∈ [0, 1] governs the degree of rivalry in utility from public education. When
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χ = 0, households perceive education as a purely nonrival good and derive utility from aggre-

gate expenditures. When χ = 1, utility depends solely on per-capita expenditures, reflecting

fully rival consumption of education services despite their public provision.

The price of the numeraire good is normalized to one and households are endowed with

income Yi. As in Busso, Gregory and Kline (2013), they demand one unit of housing in-

elastically and rent housing space at rate Pj. They also pay property taxes to finance the

provision of education services, with the property tax rate in school district j denoted by

τj. Formally, in any location j, household i demands housing space and the numeraire to

maximize their utility subject to a budget constraint:

max
H,X

{
Aij + αi log

Gj

Nχ
j

+ βi logH + γi logX

}
s.t. X + PjH (1 + τj) ≤ Yi and H = 1 (6)

Household i’s indirect utility stemming from this utility maximization problem is

Vij = αi logGj − αiχ logNj + γi log [Yi − Pj (1 + τj)] + Aij (7)

We model the amenity component of utility as the sum of a location-specific mean and a

random variable that follows a Type-I Extreme Value distribution with scale parameter θ,

Aij = Aj + Uij with Uij ∼ Gumbel (0, θ) (8)

Households sort into the school district that yields the highest indirect utility or opt to

reside outside the metropolitan area, in which case their utility is normalized to zero. As

in McFadden (1974), the parametric assumption on the idiosyncratic component of utility

implies a closed-form expression for the probability that household i chooses location j:

Nij =
exp (vij/θ)

1 +
∑

ℓ∈J exp (viℓ/θ)
(9)

where the nonstochastic component of utility is vij ≡ Aj + αi logGj − αiχ logNj +

γi log [Yi − Pj (1 + τj)]. Letting δi ≡ [αi, γi, Yi]
′ be a random vector whose joint probabil-
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ity distribution and support are denoted with F and D, respectively, the expected mass of

households who sort into location j is Nj =
∫
DNij (δi) dF (δi).

4.2 Housing Market

In each district, housing space is supplied competitively. Firms in the construction sector

produce with homogeneous technology that exhibits decreasing returns to scale (Kline and

Moretti 2014, Suárez Serrato and Zidar 2016). Thus, the marginal cost of housing space

is strictly increasing in the output. For rental rates of housing above the average cost, the

housing supply function is

logHS
j = λ+ η logPj +Bj (10)

where λ is a deterministic constant, η > 0 denotes the elasticity of housing supply, and Bj is

a random variable that captures idiosyncratic productivity shocks in the construction sector.

Moreover, the utility maximization and location choice problems jointly yield the aggregate

demand for housing in location j,

logHD
j = log

∫
D
Nij (δi) dF (δi) = logNj (11)

The market-clearing rental rate of housing is such that aggregate housing expenditures in

equilibrium are logPj + logHj =
1+η
η

logNj − λ
η
− Bj

η
.

4.3 Provision of Local Public Education Services

In this section, we embed a school expenditure authorization regression discontinuity design

(Cellini, Ferreira and Rothstein 2010) into our spatial equilibrium model. We do so by mod-

eling school districts as holding referenda on whether to change their education expenditures

by ∆Gj. The size of the proposed hike is determined outside the model, and so is the timing

of these local referenda. When a school district holds a referendum, its residents approve or

reject a new expenditure level G and set a property tax rate τ to fund it. Each jurisdiction

runs a balanced budget,

Gj = τjPjHj (12)
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Clearly, for any level of Gj, τj is pinned down by population and total rental payments.

The remainder of this section delves into the collective action process that aggregates

preferences to determine a district’s expenditure-tax mix. First, we demonstrate how house-

holds trade off higher levels of public spending on education with higher gross-of-tax housing

prices. Second, we model participation in local referenda and explain the relevance of selec-

tive turnout for the determination of public expenditures. This set of arguments allows us to

construct a microfoundation for the running variable in the regression discontinuity design.

Households have heterogeneous preferences for public expenditures and private consump-

tion of nonhousing goods and services. Formally, the level of education spending preferred

by household i who lives in school district j is the one that maximizes their indirect utility,

Gij ≡ argmax
Gj

vij = argmax
Gj

{
αi logGj − αiχ logNj + γi log [Yi − Pj (1 + τj)]

}
(13)

The first-order condition associated with this maximization problem7 is

αi︸︷︷︸
marginal benefit

= αiχ
d logNj

d logGj

∣∣∣∣∣
Gj=Gij

+ γiρij
d logPj

d logGj

∣∣∣∣∣
Gj=Gij

+ γiρij
d log (1 + τj)

d logGj

∣∣∣∣∣
Gj=Gij︸ ︷︷ ︸

marginal cost

(14)

where ρij ≡ Pj(1+τj)

Yi−Pj(1+τj)
denotes the share of gross-of-tax housing expenditures relative to

disposable income available for nonhousing consumption. Intuitively, the marginal benefit of

an increase in education spending is its marginal utility. On the other hand, the marginal cost

of an increase in education spending is the marginal disutility that stems from an increase in

the local gross-of-tax rental rate of housing required to finance it. If education expenditures

exhibit some degree of rivalry and thus χ ̸= 0, this cost also includes the marginal disutility

of congestion.

Clearly, Pj and τj are endogenous variables and their values are constrained by two re-

strictions, namely housing market clearing and balanced budget in equations (11) and (12),

respectively. Following Epple and Romer (1991), these equations define a Government Pos-

sibility Frontier (GPF), a relationship between government spending and the gross-of-tax

7In Appendix B.4.3, we prove that the objective function is strictly concave in logGj and thus Gij is a
global maximizer.
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rental rate of housing along which any spending change is such that the two constraints

hold. In the remainder of this section, the maintained assumption is that voters internalize

the effect of a change in a jurisdiction’s expenditure on that location’s housing market and

government budget. However, they take as given the housing market in other communities

and the fiscal policy chosen by other local governments. As a consequence, the relevant vari-

ables for a resident-voter in school district j are {Gj, Pj, τj}. By assumption, {Gℓ, Pℓ, τℓ}ℓ̸=j

are held constant in the derivations that follow.

Suppose that district j is holding a referendum on whether to increase education expendi-

tures by ∆Gj > 0. We assume that residents compare the status quo with the alternative in

a utilitarian framework. Specifically, any household i compares Vij (0), their current indirect

utility, with Vij (∆Gj), the potential indirect utility should the referendum be approved. The

counterfactual utility incorporates the anticipated equilibrium responses of housing prices

and property tax rates. Formally, the Government Possibility Frontier defined by equations

(11) and (12) traces out Pj and τj as functions of Gj.

The comparison of individual utilities by residents is the first step in constructing a

microfoundation for the running variable. A natural addition involves the consideration of

participation in local referenda. As thoroughly described by Berry (2009), turnout in local

elections in the United States is typically low8, especially when referenda are scheduled not to

coincide with general elections in November (Kogan, Lavertu and Peskowitz 2018). Perhaps

unsurprisingly, the few participants are extremely selected, with turnout disproportionately

driven by white, affluent, and elderly voters (Berry 2024). In addition, special interest groups

play a sizable role in driving the outcome of local consultations (Anzia 2014).

Motivated by this evidence, we propose an economic model of the individual decision

to participate in the referendum. Specifically, we posit that individual i chooses to vote in

the referendum held by jurisdiction j if the perceived benefit from participating exceeds the

associated cost. The benefit is modeled as a household- and location-specific function of the

proposed change in government expenditure, denoted Rij (∆Gj). The cost of participation

8Drawing on a complete census of school district tax and bond referenda held in California, Ohio, Texas,
and Wisconsin from 2000 to 2015, Kogan, Lavertu and Peskowitz (2018) finds that average turnout does
not exceed 30 percent in any of the four states and falls below 20 percent of the voting-age population in
California and Texas.
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is an unobserved random variable Cij with support on the positive real line. It captures

both monetary and non-monetary costs of voting, including the time and effort required to

acquire information about the referendum and the opportunity cost of casting a ballot. The

participation decision is then formally expressed as

Tij (∆Gj) = I [Cij ≤ Rij (∆Gj)] (15)

As a result, the individual probability of turnout is P (Tij = 1) = FC (Rij), where FC denotes

the cumulative distribution function of Cij. A jurisdiction’s turnout is defined as the ratio

of the expected mass of voters to the expected mass of residents:

Tj (∆Gj) ≡

expected mass of resident voters in j︷ ︸︸ ︷∫
D
Nij (δi)P (Tij (∆Gj) = 1|δi) dF (δi)∫

D
Nij (δi) dF (δi)︸ ︷︷ ︸

expected mass of residents in j

(16)

Next, we define a Bernoulli random variable Wij that equals one if household i approves the

proposed change in government spending:

Wij (∆Gj) ≡ I [vij (∆Gj) ≥ vij (0)] (17)

The expected approval vote share in jurisdiction j is given by the ratio of the expected mass

of approving voters to the expected mass of voters. The proposed expenditure change is

authorized if the approval vote share exceeds a predetermined threshold, which we set to the

true institutional value of 50 percent9. Thus, we define the approval vote share margin as

Sj (∆Gj) ≡

expected mass of resident voters approving in j︷ ︸︸ ︷∫
D
Nij (δi)P (Tij (∆Gj) = 1|δi)Wij ((∆Gj) ; δi) dF (δi)∫

D
Nij (δi)P (Tij (∆Gj) = 1|δi) dF (δi)︸ ︷︷ ︸

expected mass of resident voters in j

− 0.5 (18)

9In Wisconsin, as in most states, the approval threshold is 50 percent. However, ten states impose super-
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4.4 Definition of Equilibrium

An equilibrium consists of a finite set of school districts indexed by j ∈ J ; a unit mass

of households indexed by i, each endowed with strictly positive income Yi; a partition of

households across jurisdictions such that each location has strictly positive population Nj;

a set of stochastic location amenities
{
Aj

}
j
; a set of stochastic productivity shocks in the

residential construction sector {Bj}j; a vector of rental rates {Pj}j and property tax rates

{τj}j; an allocation of public education spending {Gj}j; an allocation of housing space {Hi}i
and numeraire consumption good {Xi}i such that the following conditions are satisfied:

(1) In every school district, households choose housing space and the numeraire consumption

good to maximize utility subject to a budget constraint, as given in equation (6).

(2) Each household resides in the jurisdiction that yields the highest indirect utility, as

defined in equation (7), with idiosyncratic location preference shocks parameterized ac-

cording to equation (8).

(3) The supply of housing units in each location follows the specification in equation (10).

(4) The housing market clears in every jurisdiction, as described in equation (11).

(5) Each jurisdiction satisfies a balanced budget constraint, as given by equation (12).

(6) Each jurisdiction’s level of government spending is determined according to majority-

rule voting among residents. If a referendum is held, a proposed spending increase ∆G

is authorized if the approval vote share margin, defined in equation (18), is positive.

5 Identification of Structural Parameters

In the previous section, we nested the running variable of a school expenditure authorization

RD design into a spatial equilibrium model of local jurisdictions. In this section, we link the

reduced-form average partial effects at the cutoff from Section 3 using the model structure.

majority requirements for referenda authorizing school facility investments (Biasi, Lafortune and Schönholzer
2025). For example, California requires 55 percent, Washington 60 percent, and Idaho 67 percent.
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By doing so, we derive a system of equations that allows us to infer the structural parameters

of the model.

We restrict our focus to a version of the model in which household preferences and income

are finitely heterogeneous. Specifically, we assume that the unit mass of households can be

partitioned into a finite set of observable types indexed by k ∈ K =
{
1, . . . , k

}
, each with

positive mass σk. The random vector δi ≡ [αi, γi, Yi]
′ is then discrete and has support{[

αk, γk, yk
]′}

k
. As a result, the spatial equilibrium features |J | × |K| expected population

masses
{
Nk

j

}
j,k
.

5.1 Household Preferences and Elasticity of Housing Supply

The approval of a referendum induces a change in local public spending by a known amount

∆Gj. We seek to characterize the equilibrium response of each endogenous variable in

the model to this policy shock. To this end, we compute arc elasticities that summarize

the proportional response of outcomes to proportional changes in expenditures. For any

endogenous variable Zℓ in location ℓ ∈ J , let Zℓ (0) denote the potential outcome under the

status quo (i.e., absent referendum approval), and let Zℓ (∆Gj) denote the potential outcome

under the approved expenditure change. The arc elasticity of Zℓ with respect to education

spending is defined as

EZℓ
(∆Gj) ≡

logZℓ (∆Gj)− logZℓ (0)

∆ logGj

(19)

While this elasticity captures the causal response of an individual outcome to the spending

shock, the structure of the model allows us to go further. Rather than analyzing each

outcome in isolation, the spatial equilibrium imposes a system of interdependent equations

that jointly determine how all endogenous variables adjust to the shock. This structure

provides a formal basis for linking elasticities across outcomes. Specifically, consider the

following nonredundant equations that govern the behavior of the endogenous variables in

equilibrium.

(a) The mass of type-k households sorting into school district ℓ ∈ J :

Nk
ℓ = σk exp

(
vkℓ /θ

k
)

1 +
∑

j′∈J exp
(
vkj′/θ

k
) (20)
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with vkℓ ≡ Aℓ + αk logGℓ − αkχ logNℓ + γk log
[
yk − Pℓ (1 + τℓ)

]
.

(b) The equilibrium rental rate of housing in district ℓ ∈ J : logPℓ =
1
η
log
∑

k∈KN
k
ℓ − λ

η
− Bℓ

η
.

Equivalently, the equilibrium quantity of housing space in jurisdiction ℓ ∈ J :

logHℓ = λ+ η logPℓ +Bℓ (21)

(c) The balanced budget run by school district ℓ ∈ J : Gℓ = τℓPℓHℓ.

For each of these equilibrium conditions, we compute arc elasticities and use them to derive a

system of equations characterizing the response of the spatial equilibrium to the expenditure

change ∆ logGj. For example, the housing supply equation (21) implies

∆ logHℓ

∆ logGj

= η
∆ logPℓ

∆ logGj

(22)

This relationship reflects the fact that a change in education spending affects housing demand

through household mobility, while the supply of housing remains directly unaffected. The

resulting shift in demand leads to price adjustments that can be used to infer the supply

elasticity η. Figure 3 illustrates the equilibrium in location j’s housing market under both

referendum rejection and approval, showing how differences in potential outcomes map into

the structural parameter of interest.

Although the arc elasticities in equation (22) are not observable, Section 3.2 establishes

that they are point identified in expectation using a regression discontinuity design centered

at the approval threshold10. Specifically, taking expectations of both sides of equation (22)

conditional on Sj = 0 and integrating over the joint probability distribution of unobservables

(i.e.,
{
Aj

}
j∈J and {Bj}j∈J ), we obtain

E
[
∆ logHℓ

∆ logGj

∣∣∣∣Sj = 0

]
= η × E

[
∆ logPℓ

∆ logGj

∣∣∣∣Sj = 0

]
(23)

10The fuzzy RD estimand in equation (3) identifies the target parameter in equation (4): a weighted
average of arc elasticities with respect to the proposed spending change. The weights are proportional to
∆ logGj and integrate to one at the cutoff. We assume that marginally approved referenda feature similar
proposed changes in education spending, so that ∆ logGj is approximately constant near the threshold. As
a result, the weights are approximately equal to one, and we can omit them from the subsequent analysis.
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Since both conditional expectations are identified, equation (23) can be used to recover the

structural parameter η.

Figure 3: Equilibria in the Local Housing Market

logPj

(
d×∆Gj

)

logHj

(
d×∆Gj

)

0

1

logPj(0) logPj(∆Gj)

logHj(0)

logHj(∆Gj)

∆ logPj

η ×∆ logPj

Notes: This figure illustrates two equilibria in location j’s housing market. The horizontal axis measures
the logarithm of potential rental rates and the vertical axis measures the logarithm of potential housing
space. Point 0 corresponds to the equilibrium under referendum rejection, with untreated potential outcomes
logPj(0) and logHj(0) observed. Point 1 corresponds to the equilibrium under referendum approval, which
increases housing demand and leads to the treated potential outcomes logPj(∆Gj) and logHj(∆Gj) being
observed. The slope of the chord connecting points 0 and 1, i.e., the ratio ∆ logHj/∆ logPj , equals the
elasticity of housing supply η.

Proceeding analogously with the household choice probability equation (20), we derive

the following approximation for the arc elasticity of the mass of type-k households in district

j with respect to the proposed expenditure change:

∆ logNk
j

∆ logGj

≈

(
1−

Nk
j

σk

)(
αk

θk
− χαk

θk
∆ logNj

∆ logGj

−
γkρkj
θk

∆ logPj

∆ logGj

−
γkρkj
θk

∆ log (1 + τj)

∆ logGj

)

−
∑
ℓ̸=j

Nk
ℓ

σk

(
αk

θk
∆ logGℓ

∆ logGj

− χαk

θk
∆ logNℓ

∆ logGj

− γkρkℓ
θk

∆ logPℓ

∆ logGj

− γkρkℓ
θk

∆ log (1 + τℓ)

∆ logGj

)
(24)

This expression features two unknown structural parameters: αk/θk and γk/θk. To identify
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them, we obtain a corresponding expression for a second district j′ ̸= j. Taking expectations

of both equations conditional on Sj = 0 yields a system with two unknowns, from which we

recover the parameters that enter type-k households’ indirect utilities.

Analogous identification arguments based on the remaining equilibrium conditions are

provided in Appendix C. These allow us to recover the full set of structural parameters:

|K| preference parameters for education spending
{
αk/θk

}
k
; |K| preference parameters for

nonhousing consumption
{
γk/θk

}
k
; the elasticity of housing supply η.

Point identification requires that the number of equations be at least as large as the

number of unknowns, which holds whenever |J |(|K|+2) ≥ 2|K|+1. In practice, the number

of school districts exceeds the number of household types, resulting in an overidentified

system.

To conduct statistical inference on the structural parameters, we compute analytical

standard errors using the delta method, which requires estimates of the pairwise covariances

among the RDD coefficients (see Appendix D). To obtain these covariances, we extract each

outcome’s sample based on its own MSE-optimal bandwidth and stack them in pairs. For

each pair, we estimate a model in which the local linear instrumental variables specifications

are fully interacted with sample indicators, and we cluster heteroskedasticity-robust standard

errors by referendum identifier. This procedure yields estimates of the covariance between

the two coefficients associated with Dj ×∆ logGj. Once the full variance-covariance matrix

of RDD parameters is constructed, we apply Ledoit-Wolf shrinkage to its correlation matrix

(Ledoit and Wolf 2004) in order to regularize the estimates and improve the stability of

subsequent inference.

5.2 Selection into Voting

We maintain the assumption that the unobserved cost of participating in the referendum

varies across both households and locations. Households of the same type are not assumed

to face identical voting costs. We model the benefit of participation as the absolute value

of the anticipated utility gain (or loss) from the proposed change in government spending.

Intuitively, when ∆Gj represents a “high-stakes” proposal for a household, that household
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is more likely to turn out, all else equal. Formally, the benefit is parameterized as

Rij (∆Gj) ≡
∣∣vkj (∆Gj)− vkj (0)

∣∣ (25)

where the superscript k denotes the household’s type, k = k(i).

The participation decision is then given by Tij (∆Gj) = I
[
Cij ≤ |vkj (∆Gj)− vkj (0) |

]
.

Accordingly, the individual probability of turnout is P (Tij (∆Gj) = 1) =

FC

(
|vkj (∆Gj)− vkj (0) |

)
. Because the benefit does not vary across households of the

same type, we compactly denote the probability of voting among type-k households in

jurisdiction j as T k
j (∆Gj) ≡ FC

(∣∣vkj (∆Gj)− vkj (0)
∣∣). As in the general case, expected

turnout in jurisdiction j is defined as the ratio of the expected mass of voters to the expected

mass of residents: Tj (∆Gj) ≡
∑

k∈KN
k
j T

k
j (∆Gj) /

∑
k∈KN

k
j .

Finally, we define the Bernoulli random variable W k
j (∆Gj) = I

[
vkj (∆Gj) ≥ vkj (0)

]
to

indicate whether type-k households prefer the proposed spending change in jurisdiction j.

As in the general model, the expected approval vote share margin is defined as the difference

between the expected mass of approving voters and the cutoff for passage:

Sj (∆Gj) ≡
∑

k∈KN
k
j T

k
j (∆Gj)W

k
j (∆Gj)∑

k∈KN
k
j T

k
j (∆Gj)

− 0.5 (26)

5.3 Turnout Parameters

Our strategy for extrapolating average effects away from the cutoff relies on the ability to

recover the approval vote share associated with counterfactual values of the proposed change

in education spending ∆Gj. Because turnout influences both the size and composition of

the electorate, it plays a central role in shaping the running variable. To capture systematic

differences in participation across household types in U.S. local elections (Anzia 2014, Berry

2024), we specify a structural model of turnout behavior and estimate its parameters to

match these documented patterns.

To this end, we parameterize the probability distribution of the unobserved cost of par-

ticipation. Specifically, we assume that Cij is log-normally-distributed with a type-specific

mean and variance:

logCij ∼ N
(
µk
0 + µk

1∆ logGj,
(
σk
0

)2 )
(27)
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The parameters
{
µk
0, σ

k
0

}
k∈K are constant across locations and capture intrinsic differences

in participation costs across household types. The slope parameters
{
µk
1

}
k∈K are likewise

location-invariant, but measure the sensitivity of each group’s expected participation cost

to the proposed change in spending. This structure induces correlation in Cij both across

jurisdictions for households of a given type and across types within a given jurisdiction,

although the latter arises solely through dependence on ∆ logGj.

This specification incorporates two salient features of referendum participation. First, it

allows turnout to respond to the size of the proposed spending change, reflecting the idea that

larger school construction or renovation projects are more likely to mobilize nonmarginal vot-

ers. Second, it allows participation costs to vary across household types, accounting for the

fact that some groups—such as elderly individuals without children—may be more inclined

or able to participate in initiatives that influence the provision of local public services.

Given this assumption, the probability of turnout among type-k households is

T k
j (∆Gj) = Φ

(
log
∣∣vkj (∆Gj)− vkj (0)

∣∣− (µk
0 + µk

1∆ logGj

)
σk
0

)
(28)

where Φ denotes the cumulative distribution function of a standard normal random variable.

To identify the parameters governing the economic model of turnout, we proceed under

the assumption that T k
j is observed. Although publicly available data report only aggre-

gate turnout, we have access to the Labels & Lists (L2) Voter Data, which compiles voter

registration records from all fifty states and Washington, D.C., and supplements them with

proprietary commercial data containing demographic and basic financial characteristics. We

rely on this dataset to estimate participation rates for each household group in our sample

of Wisconsin school district referenda.

Since the structural parameters of the model are known, the benefit from participation,

given by |vkj (∆Gj)− vkj (0) |, is also known. In the remainder of this section, we exploit the

parametric assumption on Cij to estimate the parameters that maximize the likelihood of

observing the turnout rates implied by the model. Accordingly, we specify a measurement

model for T k
j (∆Gj). Letting qT k

j and qNk
j denote, respectively, the observed turnout and
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population count of type-k households in jurisdiction j, we assume

qT k
j ∼ Binomial

(
qNk
j , T

k
j

)
(29)

That is, observed turnout is modeled as a binomial random variable, with the number of

trials given by the observed population count and the probability of success equal to the

model-implied turnout rate T k
j .

Given this specification, our parameter set of interest is P =
{{
µk
0, µ

k
1, σ

k
0

}
k∈K

}
and we

let ϑ denote the vector stacking all elements of P . We index jurisdiction-referendum pairs

by j11. The resulting likelihood function is then

L (ϑ) =
n∏

j=1

∏
k∈K

 qNk
j

qT k
j

T k
j (ϑ)

qTk
j
(
1− T k

j (ϑ)
) qNk

j − qTk
j (30)

We estimate the parameters in P by maximizing the likelihood in (30) with respect to ϑ.

A distinctive feature of our setting is that the preference and housing supply parameters

ζ ≡ [α1, α2, α3, α4, γ1, γ2, γ3, γ4, η] enter the likelihood function directly, as they influence

both the decision to participate in the referendum and the choice to approve or reject the

proposed expenditure change. Letting ζ̂ denote the estimate of ζ, the log-likelihood function

conditional on ζ̂ is given by the following expression, up to an additive constant:

logL
(
ϑ; ζ̂
)
=

n∑
j=1

∑
k∈K

[
qT k
j log T k

j

(
ϑ; ζ̂
)
+
(
qNk
j − qT k

j

)
log
(
1− T k

j

(
ϑ; ζ̂
))]

(31)

Although ζ̂ enters the likelihood function as a fixed constant, it is in fact the realized

value of an estimator and thus subject to sampling variability. As a result, standard errors

based solely on the curvature of the likelihood understate the true statistical uncertainty

associated with ϑ̂.

To address this issue, we implement a parametric bootstrap procedure that incorporates

the stochastic nature of ζ̂ into inference for ϑ. Specifically, we rely on the asymptotic normal-

11That is, j indexes distinct referenda, allowing for multiple ballot measures within the same jurisdiction
over time.
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ity of the estimator of ζ, which is distributed approximately as N
(
ζ̂ , Σ̂ζ

)
in finite samples.

For each replication m ∈ {1, . . . ,m}, we draw ζ̂(m) from this distribution, re-estimate ϑ

by maximizing the likelihood conditional on ζ̂(m), and obtain ϑ̂(m) and its corresponding

variance-covariance matrix Σ̂
(m)
ϑ . We subsequently compute the within-replication variance-

covariance matrix as the average of the estimated variance-covariance matrices:

Σ̂ϑ ≡ 1

m

m∑
m=1

Σ̂
(m)
ϑ (32)

To capture simulation-induced dispersion in point estimates, we compute the between-

replication variance-covariance matrix:

˜̂
Σϑ ≡ 1

m− 1

m∑
m=1

(
ϑ̂(m) − ϑ̂

)(
ϑ̂(m) − ϑ̂

)′
with ϑ̂ ≡ 1

m

m∑
m=1

ϑ̂(m) (33)

To conclude, following Rubin (1987, pp. 76–77), we obtain the total variance-covariance

matrix as

Σ̂ϑ = Σ̂ϑ +

(
1 +

1

m

) ˜̂
Σϑ (34)

This total variance accounts for both the uncertainty conditional on ζ̂ and the additional

variability introduced by treating ζ̂ as an estimate rather than a known quantity.

6 Extrapolation of Average Partial Effects

In this section, we describe how the model structure and the microfoundation for the running

variable allow us to extrapolate average effects away from the cutoff. The central feature

of our approach is that we manipulate a policy variable—the proposed change in school

spending, ∆G—rather than the approval vote share, which reflects the interaction between

∆G and underlying economic fundamentals.

6.1 Structural Extrapolation Algorithm

We maintain the assumption that all model parameters—including
{{
µk
0, µ

k
1, σ

k
0

}
k∈K

}
—

are known. Given the model structure and these disciplining parameters, we can simulate
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counterfactual realizations of both the running variable and the outcomes of interest.

As in any sharp regression discontinuity design, the conditional potential outcome mean

E [Zℓ (0) |Sj = s] is counterfactual for s > 0, while E [Zℓ (∆Gj) |Sj = s] is counterfactual for

s ≤ 0, for any endogenous variable Zℓ. To estimate these quantities, we simulate the data

generating process for each school district–referendum pair across a range of hypothetical pol-

icy changes. This allows us to compute the counterfactual values of
{
Pℓ, Hℓ, Gℓ, τℓ,

{
Nk

ℓ

}
k

}
ℓ

at realizations of the vote share away from the threshold.

To illustrate our strategy, suppose that a proposed change ∆Gj yields a realization of the

running variable Sj (∆Gj) greater than 0. We first compute the equilibrium that results from

referendum approval and the associated increase in government spending. By construction,

this equilibrium is extrapolated and observed in the simulation. We then compute the equi-

librium that would arise under the same realization of Sj, but assuming the referendum did

not result in any change in education spending. This pre-referendum equilibrium is, by def-

inition, counterfactual. The same logic applies symmetrically when Sj (∆Gj) ≤ 0, in which

case the untreated equilibrium is observed and the treated equilibrium is counterfactual.

Repeating this procedure over a grid of proposed expenditure changes allows us to recover

extrapolated potential outcomes across the support of the running variable. We then average

simulated outcomes within bins of Sj (∆Gj). The difference between treated and untreated

equilibria defines the average treatment effect away from the cutoff.

More specifically, the procedure proceeds as follows. For each jurisdiction–referendum

pair j, consider a finely spaced grid G of positive values of ∆Gj. For each ∆Gj ∈ G, we

implement the following steps:

(1) For each household type k, compute the probability of participating in the referendum.

Under the assumption that the unobserved cost of voting is log-normally distributed

with type-specific parameters, this probability is given by equation (28). Because both

the perceived benefit and the cost depend on ∆Gj, turnout probabilities vary with the

size of the proposed spending change.

(2) Compute the approval vote share margin Sj (∆Gj) using equation (26).

(3) Starting from the equilibrium observed in the data, update model outcomes
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{
Pℓ, Hℓ, τℓ,

{
Nk

ℓ

}
k

}
ℓ
as follows:

(a) Increase government spending in jurisdiction j from Gj to Gj +∆Gj, and solve for

a new spatial equilibrium. All other jurisdictions are assumed not to hold referenda.

This assumption reflects the SUTVA restriction used to identify structural parame-

ters in Section 5.1. The resulting equilibrium captures the impulse response of the

system to a spending shock in district j.

(b) Compute the equilibrium under referendum rejection (i.e., ∆Gj = 0). Since govern-

ment spending remains unchanged, this equilibrium does not vary across the grid G

and serves as the common baseline for all counterfactual comparisons.

(c) Denote the endogenous variables from each equilibrium as{
Pℓ (∆Gj) , Hℓ (∆Gj) , Gℓ (∆Gj) , τℓ (∆Gj) ,

{
Nk

ℓ (∆Gj)
}
k

}
ℓ

for both ∆Gj = 0

and ∆Gj > 0.

This procedure is repeated for all jurisdiction–referendum pairs j = 1, 2, . . . , n. For each

endogenous variable, the output is a matrix of extrapolated values of dimension n× |G| × 2,

corresponding to the number of referenda, the grid of proposed spending changes, and the

two policy scenarios (no change and proposed change), respectively. The algorithm also

produces an n× |G| matrix of simulated values of the running variable Sj (∆Gj).

For any s ∈ [−0.5, 0.5], the average arc elasticity of outcome Zℓ with respect to Gj,

conditional on an approval vote share margin of Sj = s, is defined as

AVEZℓ
(s) ≡ E

[
logZℓ (∆Gj)− logZℓ (0)

∆ logGj

∣∣∣∣Sj (∆Gj) = s

]
(35)

Since Sj is a continuous random variable, a natural estimator for AVE (s) is

ÂVEZℓ
(b) ≡

∑
∆Gj∈G

logZℓ(∆Gj)−logZℓ(0)

∆ logGj
× I [Sj (∆Gj) ∈ [b, b+ κ)]∑

∆Gj∈G I [Sj (∆Gj) ∈ [b, b+ κ)]
(36)

where κ denotes the bin width and serves as a tuning parameter. This nonparametric

estimator computes local averages of arc elasticities in bins determined by realizations of the

simulated running variable.
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6.2 Statistical Inference

To conduct statistical inference on each target elasticity, we follow an approach analogous

to that in the previous section. Each estimator ÂVEZℓ
(b) is a function of the estimated

parameter vectors ζ̂ and ϑ̂, and therefore inherits sampling variability from both. We account

for this uncertainty by drawing from the known approximate distribution of the estimator

of ζ, namely N
(
ζ̂ , Σ̂ζ

)
. For each replication m ∈ {1, . . . ,m}, we sample a realization ζ̂(m),

re-estimate ϑ with maximum likelihood conditional on ζ̂(m), and compute the corresponding

set of average arc elasticities
{
ÂVE

(m)

Zℓ
(b)
}

b
using the parameter pair

(
ζ̂(m), ϑ̂(m)

)
.

This procedure captures the sampling uncertainty in ζ̂ but treats ϑ̂ as fixed within each

draw. To propagate the uncertainty in ϑ̂ given ζ̂(m), we implement an additional parametric

bootstrap12. Specifically, within each replication m, we draw r times from the known ap-

proximate distribution of the maximum likelihood estimator of ϑ, given by N
(
ϑ̂(m), Σ̂

(m)
ϑ

)
.

For each resulting pair (m, r), we recompute the average arc elasticities, yielding the set{
ÂVE

(m,r)

Zℓ
(b)
}

b
.

To construct confidence intervals around each counterfactual statistic, we compute the

total variance of ÂVEZℓ
(b) by combining within- and between-replication components. For

any bin of the approval vote margin b, we begin by calculating the within-replication variance

associated with the mth draw:

σ̂2(m) (b) ≡ 1

r − 1

r∑
r=1

(
ÂVE

(m,r)

Zℓ
(b)− ÂVE

(m)

Zℓ
(b)

)2

(37)

where the mean across inner replications is given by ÂVE
(m)

Zℓ
(b) ≡ 1

r

∑r
r=1 ÂVE

(m,r)

Zℓ
(b). We

then average the resulting values across outer replications to obtain the within-replication

component of the total variance:

σ̂
2
(b) ≡ 1

m

m∑
m=1

σ̂2(m) (b) (38)

Next, we compute the between-replication variance, which captures the uncertainty due

12The arc elasticities EZℓ
are not continuously differentiable in ϑ due to the threshold-based rule that

determines referendum approval or rejection. This precludes the application of the delta method.
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to sampling variation in the first-stage parameter vector ζ̂:

˜̂σ2
(b) ≡ 1

m− 1

m∑
m=1

(
ÂVE

(m)

Zℓ
(b)− ÂVEZℓ

(b)

)2

(39)

with ÂVEZℓ
(b) ≡ 1

m

∑m
m=1 ÂVE

(m)

Zℓ
(b).

Finally, following Rubin (1987, pp. 76–77), we obtain the total variance of ÂVEZℓ
(b) as

σ̂2 (b) = σ̂
2
(b) +

(
1 +

1

m

) ˜̂σ2
(b) (40)

7 Simulation

In this section, we apply the methods developed in the preceding sections to simulated data.

First, we confirm that it is possible to infer the structural parameters of our spatial equi-

librium model using regression discontinuity designs. Second, we verify that our maximum

likelihood procedure recovers the parameters governing turnout in school expenditure refer-

enda according to our selection model. Third, we leverage the model structure and parameter

estimates to extrapolate the cutoff-specific capitalization of expenditure changes in housing

values away from the threshold.

7.1 Data Generating Process

Our data generating process closely mirrors the structure of the model. Households sort

across school districts or choose to reside outside the metropolitan area. Given initial alloca-

tions of population masses
{
Nk

j

}
j,k
, housing space {Hj}j, rental rates {Pj}j, school district

expenditures {Gj}j, and property tax rates {τj}j that satisfy the equilibrium conditions

described in Section 4.4, one jurisdiction is randomly selected to hold a referendum involv-

ing a randomly drawn proposed change in school spending ∆G. Voter turnout follows the

process in Section 5.2, determining a realization of the running variable S. If the proposal is

approved, government spending in the selected jurisdiction increases by ∆G, and the model

is re-solved to reflect the new policy environment.

To approximate the size of our Wisconsin sample, we generate 2,000 referenda under
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each set of initial conditions. We combine these into a single dataset and use a regres-

sion discontinuity design to estimate the causal parameter WAVE (0) for each endogenous

outcome. Crucially, each simulated observation features only one jurisdiction undergoing a

policy change, which ensures that the Stable Unit Treatment Value Assumption (SUTVA)

is not violated when comparing treated and control jurisdictions across observations. In

addition to the regression discontinuity analysis, we implement the maximum likelihood es-

timator described in Section 5.3 to estimate the parameters governing selection into voting.

We repeat this procedure 100 times. While structural parameters remain fixed across

replications, we re-draw the unobserved location-specific amenity values
{
Aj

}
j
and pro-

ductivity shocks in the construction sector {Bj}j in each iteration to generate new initial

conditions.

7.2 Parameterization

We partition the unit mass of households into K = 4 distinct types, each comprising an

equal mass σk = 0.25. We set the parameters that measure preference for school district

spending to (α1, α2, α3, α4) = (0.55, 0.20, 0.15, 0.10) and the parameters that measure pref-

erence for nonhousing goods to (γ1, γ2, γ3, γ4) = (0.35, 0.30, 0.25, 0.20). We specify house-

hold income as a concave function of the preference for education, i.e., (y1, y2, y3, y4) =

(0.45, 0.55, 0.55, 0.45). In addition, for each type k, we compute the preference for housing

floor space as βk = 1 − αk − γk. We set χ = 1, so that households value per capita rather

than aggregate education spending, reflecting the assumption that education is a rival good.

We also fix the scale parameter of the Type-I Extreme Value distributed idiosyncratic utility

shock at θk = 1 for all types.

We model the metropolitan area as consisting of J = 10 school districts. In each jurisdic-

tion, we set the housing supply parameters to γ = 0 and η = 0.6. To introduce unobserved

heterogeneity, we draw amenity values and construction productivity shocks independently

from normal distributions: Aj ∼ N (0, 0.1) and Bj ∼ N (−1.2, 0.05).

When a jurisdiction holds a referendum, we draw the proposed change in log spending

from a uniform distribution: ∆ logG ∼ U [0.095, 0.105]13. To model turnout, we spec-

13To estimate the parameters governing turnout, the proposed expenditure change is ∆G ∼ U [0.01, 0.40].
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ify the expected log cost of participation logCij for each type k ∈ K using intercepts

(µ1
0, µ

2
0, µ

3
0, µ

4
0) = (−3,−5,−7,−3) and slopes (µ1

1, µ
2
1, µ

3
1, µ

4
1) = (−1,−1, 0, 0). Finally, we

fix the variance of the participation cost at σk
0 = 3 for all types.

7.3 Structural Parameter Estimates

We estimate the structural parameters
{
αk
}4
k=1

and
{
γk
}4
k=1

, which govern households’

preferences for public education expenditures and housing space, respectively, by leveraging

the system of equations implied by households’ choice probabilities in equation (20). These

parameters are only point identified up to scale, as the solutions to the linear system in

equations (C.209) and (C.210) yield, for each k, the ratios αk/θk and γk/θk. Although the

scale parameters of the Gumbel distributed idiosyncratic utility shocks are not identified, we

can compute the economically meaningful ratio αk/γk, which reflects the marginal willingness

to pay for public education services relative to the marginal utility of income.

Table 2: Comparison of True and Estimated
{
αk/γk

}
k∈K

Household
Type (k)

αk/θk γk/θk αk/γk

True Estimate True Estimate True Estimate

1 0.550 0.552 0.350 0.352 1.571 1.568
(0.004) (0.003) (0.002)

2 0.200 0.200 0.300 0.300 0.667 0.668
(0.006) (0.004) (0.005)

3 0.150 0.150 0.250 0.250 0.600 0.601
(0.003) (0.002) (0.004)

4 0.100 0.100 0.200 0.200 0.500 0.501
(0.005) (0.003) (0.001)

Notes: This table summarizes results from a Monte Carlo simulation based on the data generating process
described in Section 7.1 and the parameter values specified in Section 7.2. For each household type k ∈
{1, 2, 3, 4}, the table reports the true parameter values alongside the corresponding estimates obtained using
the regression discontinuity design and identification strategy outlined in Section 5.1. Each entry in the
“Estimate” columns reports the mean point estimate across 100 replications. The corresponding average
standard error, obtained via the delta method, is reported in parentheses.

Table 2 presents the results from the simulation exercise. For each household prefer-

ence parameter, we report the true values alongside the corresponding estimates obtained
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by applying the identification strategy outlined above to regression discontinuity estimates

from simulated datasets. Averaged over 100 replications, the method reliably recovers the

parameters of interest, with average standard errors remaining modest. In addition, we

estimate the location-specific amenity values
{
Aj

}
j∈J and construction sector productivity

shocks {Bj}j∈J by matching each household type’s population mass Nk
j to its model-implied

counterpart.

We proceed in a similar fashion to estimate the elasticity of housing supply η. Specifically,

we use equation (23) and correctly recover the true value of the target parameter with

negligible variation across replications.

Table 3: Comparison of True and Estimated Turnout Parameters

Household
Type (k)

µk
0 µk

1

True Estimate True Estimate

1 −3.000 −2.995 −1.000 −1.020
(0.007) (0.037)

2 −5.000 −4.966 −1.000 −1.076
(0.015) (0.054)

3 −7.000 −7.021 0.000 −0.000
(0.011) (0.074)

4 −3.000 −3.002 0.000 −0.002
(0.018) (0.048)

Notes: This table summarizes results from a Monte Carlo simulation based on the data generating process
described in Section 7.1 and the parameter values specified in Section 7.2. For each household type k ∈
{1, 2, 3, 4}, the table reports the true parameter values alongside the corresponding estimates obtained using
the maximum likelihood procedure detailed in Section 5.3. Each entry in the “Estimate” columns reports
the mean point estimate across 100 replications. The corresponding average standard error, obtained via a
parametric bootstrap with 100 iterations, is reported in parentheses.

Finally, we apply maximum likelihood to recover the intercept and slope coefficients that

characterize the expected log cost of participating in a referendum. Specifically, we estimate{
µk
0, µ

k
1

}4
k=1

. Table 3 summarizes the simulation results. As in the previous table, we report

the true parameter values alongside their corresponding average estimates and standard

errors across 100 replications. The results indicate that the proposed method accurately

recovers the underlying parameters governing selection into political participation. This also
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holds for the variance intercept σ0, whose average point estimate and standard error across

replications are 3.008 and 0.012, respectively.

7.4 Extrapolation of Average Housing Price Arc Elasticities

Having established that the model’s structural parameters can be estimated using regres-

sion discontinuity designs, we now implement the extrapolation procedure described in Sec-

tion 6.1.

We begin by considering the average treatment effect at the threshold. Under the model

implied by the data generating process in Section 7.1 and the parameterization in Sec-

tion 7.2, referendum approval causes rental rates to increase at the cutoff. In addition, both

E [logPj(0)|Sj = s] and E [logPj(∆Gj)|Sj = s] are decreasing in s on the left and right sides

of the threshold, respectively.

Delving into the extrapolation algorithm, we use the samples of 2,000 “observed” ref-

erenda from each Monte Carlo replication that were employed to estimate cutoff-specific

average effects and recover the structural parameters. For each of these referenda, we con-

sider the spatial equilibrium prior to the vote and simulate 20 referenda featuring proposed

changes in log school district expenditures in the [0.01, 0.40] interval.

Figure 4 presents the results. Panel (a) displays nonparametric estimates of

E [Sj|∆ logGj], computed in bins of fixed width using a uniform kernel. The approval vote

share margin appears to be, on average, a monotonically decreasing function of the proposed

expenditure change. This pattern is intuitive: in a setting where the metropolitan area is in

spatial equilibrium before the vote, referenda that entail smaller deviations from the status

quo naturally garner broader support.

Panel (b) presents nonparametric estimates of E [∆ logPj/∆ logGj|Sj], also obtained

using a uniform kernel and fixed-width bins. This plot represents the core result of the

extrapolation exercise: the average arc elasticity of rental rates with respect to education

spending is positive and increasing in the vote share margin near the cutoff. However, the

slope attenuates for realizations of the running variable away from the threshold.

This nonlinearity can be understood by examining Panels (c) and (d), which

display analogous nonparametric estimates of E
[
logN1

j (∆Gj)− logN1
j (0) |Sj

]
and
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Figure 4: Average Extrapolated Effects of Referendum Approval

(a) E [Sj (∆Gj) |∆ logGj ] (b) E [∆ logPj/∆ logGj |Sj (∆Gj)]

(c) E
[
logN1

j (∆Gj)− logN1
j (0)

∣∣Sj (∆Gj)
]

(d) E
[
logN4

j (∆Gj)− logN4
j (0)

∣∣Sj (∆Gj)
]

Notes: This figure presents results from applying the extrapolation procedure described in Section 6.1 to
synthetic data generated according to the process outlined in Section 7.1. For each of the 2,000 referenda and
each of the 100 Monte Carlo replications used to produce the estimates in Tables 2 and 3, the extrapolation
sample consists of 20 simulated referenda with proposed log expenditure changes in the [0.01, 0.40] interval.
Panel (a) presents nonparametric estimates of the average approval vote share margin in bins of the proposed
change in log school district expenditure. Panel (b) reports nonparametric estimates of the average arc
elasticity of housing rents with respect to education spending in bins of the approval vote share margin.
Panels (c) and (d) display analogous estimates for the average effect of referendum approval on the log
mass of type k = 1 and type k = 4 households, respectively. In all panels, the bin width is 0.005. Bin-
specific estimates are averaged across Monte Carlo replications. Shaded gray regions depict the corresponding
pointwise average standard errors, computed using a two-step parametric bootstrap procedure with 100 outer
replications and 20 inner replications per outer draw.

E
[
logN4

j (∆Gj)− logN4
j (0) |Sj

]
, respectively. The average effect of referendum approval

on the mass of k = 1 households is positive, reflecting their high valuation of public school

spending, whereas the effect on the mass of k = 4 households is negative, consistent with

their lower willingness to pay. For both groups, the magnitude of the average effect declines

37



monotonically with the vote share margin, mirroring the pattern in Panel (a): referenda

with a higher probability of passage typically involve smaller proposed expenditure changes

and thus generate more modest mobility responses. As long as the net inflow of households

remains positive, increased demand exerts upward pressure on rental rates, but this effect

diminishes as the vote share margin moves farther from the cutoff.

8 The Effects of School Expenditure Authorizations on

Housing Prices for Nonmarginal Referenda

In this section, we apply our method to estimate the effects of school expenditure authoriza-

tion on housing prices in Wisconsin away from the referendum approval threshold.

8.1 Spatial Partitioning and Household Heterogeneity

Wisconsin comprises 28 Core-Based Statistical Areas (CBSAs), of which 15 are Metropolitan

Statistical Areas (MSAs) and 13 are Micropolitan Statistical Areas (µSAs). We consider each

of these CBSAs as a region in our spatial equilibrium model, meaning that each CBSA is

partitioned into several school districts and households choose where to live within said

CBSA or opt for the outside option, which we model as the combined areas of Wisconsin

located outside CBSAs14. Since CBSAs vary significantly in terms of population, we do not

normalize their population to a unit mass and instead, for any household type k, interpret

σk and Nk
j as population counts, rather than expected masses.

CBSAs naturally vary in their number of school districts J 15, while we set K = 4

across the board. Specifically, we consider households whose income is above or below the

Wisconsin median, further distinguished based on whether they have zero or a positive

number of children aged less than 18 years old. Given our focus on location choice based

on school district spending, we wish to differentiate families by their willingness to pay for

14According to the 2019-2023 American Community Survey, 13.4 percent of Wisconsin families live outside
Core-Based Statistical Areas.

15For the purpose of estimating the effect of referendum approval in jurisdictions other than the school
district holding the referendum, we aggregate those school districts into an “outer” jurisdiction. Clearly, the
definition of this outside area varies depending on the school district holding the referendum.
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public K-12 education services (αk/γk in our model), and presence of children jointly with

income are two likely salient factors for this parameter.

8.2 Data

In Section 3.1, we described how we construct a panel on average housing values in Wisconsin

school districts. We complement housing price data with household-type-specific population

counts from the 2000 Decennial Census and the five-year American Community Surveys

(ACSs) ranging from 2005-2009 to 2019-202316.

In addition, we collect data on school district finances provided by the Wisconsin De-

partment of Public Instruction. Specifically, we draw each district’s revenue from all sources,

property tax revenue, and property tax rate. We use the revenue from all sources, includ-

ing grants from the federal and state governments, to measure Gj in our model, effectively

imposing that jurisdictions balance their budget. In doing so, we assume that intergovern-

mental transfers are fixed for each jurisdiction and are not adjusted in response to changes

in property tax rates17. This choice does not invalidate our identification strategy because

changes in school expenditure authorized by referenda are repaid entirely with revenue from

property taxes. Finally, we use the property tax rate to infer the number of housing units Hj

by dividing each district’s property tax revenue by the average property tax liability, namely

the product of the average housing price Pj by τj.

16Because family counts based on presence of dependent children and income are not available prior to the
2000 Decennial Census, these outcomes cannot be measured exactly five years after each referendum, as we
instead can do for housing prices. We then adopt the following solution. For referenda that occurred between
1990 and 1995, population count outcomes are measured in the 2000 Decennial Census. For referenda that
occurred between 1996 and 2000, population count outcomes are measured in the 2005-2009 ACS. Starting
from 2001, referenda are linked to the five-year American Community Survey that begins exactly five years
later. That is, we use the 2006-2010 ACS for referenda in 2001, the 2007-2011 ACS for referenda in 2002,
and so on until referenda that took place in 2014, for which we use the last available, 2019-2023 ACS.

17In Wisconsin, the primary source of state aid to school districts is the State Equalization Aid program.
This program allocates funds through a three-tier formula under which the share of a district’s costs covered
by state aid declines as the district’s property tax base per pupil increases. As a result, when a school district
approves a referendum to raise expenditures, its state aid is mechanically reduced, though by less than one
dollar for each additional dollar of authorized spending. In addition, this offset does not apply to referenda
authorizing the issuance of general obligation bonds to finance capital expenditures, which often involve the
largest proposed increases in spending. Approximately 75 percent of capital outlays are financed by school
districts using local revenue (Filardo 2016), and the distribution of these expenditures varies substantially
within the state (Biasi 2023; Biasi, Lafortune and Schönholzer 2025).
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8.3 Structural Parameter Estimates

We begin by revisiting the indirect utility function Vij and applying two standard normal-

izations. First, we divide all terms in the utility function by the strictly positive parameter

γk. This transformation allows us to express the preference parameter αk/γk as the marginal

utility of school district expenditure in units of income rather than in utils, thereby facilitat-

ing interpretation. With a slight abuse of notation, we denote the rescaled indirect utility of

household i in district j as

Vij =
Aj

γk
+
αk

γk
logGj + log

[
yk − Pj (1 + τj)

]
+ Uij (41)

where the idiosyncratic component Uij follows a Gumbel distribution with scale parameter

θk/γk. Second, we impose the normalization θk/γk = 1, which, while affecting the scale of

utility, does not alter the choice probabilities. Since our analysis does not involve computing

welfare measures expressed in utils, this normalization is without loss of generality.

We are now ready to estimate the structural parameters
{
αk/γk

}4
k=1

by leveraging the

system of equations implied by the choice probabilities. As detailed in equations (C.209)

and (C.210), this step involves, for each household type, the estimation of 18 regression

discontinuity coefficients, each of which identifies the WAVE (0) of a distinct outcome with

respect to school expenditures, i.e., a weighted average of arc elasticities with respect to the

underlying policy variable. We adopt a similar approach to estimate the elasticity of housing

supply η, which, as discussed in Section 5.1, can be recovered from just two RDD estimates.

Table 4 reports the estimated structural parameters. Across the four household groups,

the marginal willingness to pay for K–12 education expenditures—captured by α/γ—is below

one. Although the standard errors of pairwise differences are not small enough to support

formal statistical comparisons, the point estimates display meaningful heterogeneity. In

particular, α/γ is highest among households with children under the age of 18 and income

above the median, and lowest among households with children and income below the median.

This pattern is consistent with the findings of Biasi, Lafortune and Schönholzer (2025), which

shows that the approval of school expenditure referenda affects the composition of the student

body, reducing the share of Hispanic students, increasing the share of Asian students, and

decreasing the proportion of pupils eligible for free or reduced-price lunch (FRPL). Taken
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together, this evidence suggests that household sorting across school districts is a salient

margin of adjustment in response to changes in local public spending. Finally, our estimate

of the elasticity of housing supply is 0.44, a value we consider plausible given our focus on

relatively urbanized areas.

Table 4: Estimates of
{
αk/γk

}4
k=1

and η

Parameter Group Estimate

α1/γ1 With Children, Below Median Income 0.693
(0.119)

α2/γ2 With Children, Above Median Income 0.868
(0.195)

α3/γ3 Without Children, Below Median Income 0.709
(0.171)

α4/γ4 Without Children, Above Median Income 0.830
(0.209)

η 0.439
(0.079)

Notes: This table presents estimates of
{
αk/γk

}4
k=1

, which measure each household group’s marginal
willingness to pay for public education expenditure in units of income, and η, the elasticity of housing
supply. Point estimates are obtained by solving the systems of equations implied by household choice
probabilities (20) and the housing supply equation (21), using regression discontinuity (RDD) estimates as
inputs. Standard errors are computed via the delta method.

Having completed the estimation of the parameters identified solely through RDD coeffi-

cients, we proceed to estimate the location-type-specific intercepts
{
Aj/γ

k
}
j,k

for all school

districts located within CBSAs in Wisconsin. For each CBSA, we solve the system of equa-

tions that set the model-implied conditional population massesNk
j /σ

k equal to their observed

counterparts in the year prior to each referendum. We follow an analogous procedure to es-

timate the location-specific productivity terms {Bj}j in the construction sector, along with

the common intercept λ. To achieve point identification, we impose the normalization that

the mean of Bj across locations is zero.

Finally, we estimate the parameter vector ϑ, which governs the unobserved log cost of

participation in local referenda, using the procedure described in Section 5.3. To reduce the

dimensionality of the parameter space, we impose a common slope µ1 with respect to the
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proposed spending change ∆ logGj and a common standard deviation σ0. Table 5 presents

the results. As expected, the estimated value of µ1 is negative, consistent with the notion that

participation costs decline in higher-stakes referenda, potentially due to lower informational

or attentional barriers when the proposed policy is more salient (e.g., the construction or

renovation of a school). The household-group-specific intercepts exhibit a notable pattern:

participation costs are highest among households with children and income below the median,

and lowest among those without children—a group that likely includes most retirees. These

findings align with patterns of voter selection in U.S. local elections documented by Berry

(2024).

Table 5: Estimates of Turnout Parameters

Parameter Group Estimate

µ1
0 With Children, Below Median Income 2.49

(0.75)

µ2
0 With Children, Above Median Income −1.56

(0.48)

µ3
0 Without Children, Below Median Income −4.52

(1.33)

µ4
0 Without Children, Above Median Income −4.94

(1.48)

µ1 −1.52
(0.69)

σ0 3.42
(0.35)

Notes: This table reports estimates of the following parameters:
{
µk
0

}4
k=1

, the set of household-group-
specific intercepts in the average log cost of participation in local referenda; µ1, the common slope with respect
to the proposed spending change ∆ logGj ; and σ0, the common standard deviation of the unobserved log cost.
Point estimates are obtained via the maximum likelihood procedure outlined in Section 5.3, conditioning on
the estimated parameter vector ζ̂ reported in Table 4. Standard errors are computed using a parametric
bootstrap procedure with 500 replications.

8.4 Extrapolation of Average Housing Price Arc Elasticities

We now implement the extrapolation algorithm described in Section 6.1 using the full dataset

of referenda held by Wisconsin school districts. For each observed referendum, we generate
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75 counterfactual consultations involving proposed changes in log education expenditure

drawn from a discrete set G comprising uniformly spaced values over the interval [0.01, 0.16].

For each simulated policy scenario, we compute the realization of the potential approval

vote share margin Sj (∆Gj), the potential rental rate of housing under referendum rejection

logPj (0), and the potential rental rate of housing under referendum approval logPj (∆Gj).

Based on these, we calculate the arc elasticity of rental rates with respect to education

spending as

EPj
(∆Gj) ≡

logPj (∆Gj)− logPj (0)

∆ logGj

(42)

To examine how these elasticities vary with the degree of local political consensus, we par-

tition the support of the simulated approval margin Sj (∆Gj) into 200 bins of equal width

κ = 0.02 and compute the average arc elasticity within each bin. Specifically, for each

b ∈ {−0.50,−0.48, . . . , 0.48}, we estimate

ÂVEPj
(b) ≡

∑
∆Gj∈G EPj

(∆Gj)× I [Sj (∆Gj) ∈ [b, b+ κ)]∑
∆Gj∈G I [Sj (∆Gj) ∈ [b, b+ κ)]

(43)

The resulting set of estimates
{
ÂVEPj

(b)
}

b
comprises average extrapolated effects of edu-

cation spending on housing prices over a broad range of approval margins, extending beyond

the local parameter identified at the cutoff in Section 3.2.

Figure 5 presents the results of the extrapolation procedure. Panel (a), based exclusively

on observed referenda, corroborates the theoretical prediction that proposals involving larger

increases in education expenditure tend to be approved by narrower margins. Panel (b)

displays the principal empirical finding of our analysis: the average arc elasticity of hous-

ing prices with respect to education spending varies substantially across the approval vote

margin. To the right of the cutoff, the average elasticity increases steadily, implying that

the positive capitalization effect estimated at the threshold, and documented in prior work

(Cellini, Ferreira and Rothstein 2010, Biasi, Lafortune and Schönholzer 2025), extends to

referenda supported by a larger share of voters. To the left of the cutoff, the average elastic-

ity initially remains close to zero, but then declines and turns negative for ballot measures

that garnered limited approval. This pattern indicates that some rejected proposals would
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have reduced local housing demand through negative net sorting responses. That is, the

aggregate willingness to pay for education services would have fallen sufficiently to depress

equilibrium prices, primarily due to net outmigration of household groups with compara-

tively low valuation of public education relative to income. Taken together, these findings

underscore that estimates at the approval threshold are informative but may not capture

housing market responses across a broader range of vote shares.

Figure 5: Average Extrapolated Effects of Referendum Approval

(a) E [Sj |∆ logGj ] (b) E [∆ logPj/∆ logGj |Sj (∆Gj)]

Notes: This figure presents results from applying the extrapolation procedure described in Section 6.1 to a
dataset of 3,528 school district referenda held in Wisconsin between 1990 and 2022. For each of these local
consultations, the extrapolation sample consists of 75 simulated referenda with proposed log expenditure
changes selected from a grid of values spanning the interval [0.01, 0.16]. Based solely on observed referenda,
Panel (a) displays nonparametric estimates of the average approval vote share margin in bins of the proposed
change in log school district expenditure. Estimates are adjusted for a vector of covariates that includes
referendum year indicators and school district indicators. Using the extrapolation sample, Panel (b) presents
nonparametric estimates of the average arc elasticity of housing prices with respect to school district spending
in bins of the approval vote share margin. Shaded gray regions denote 90 percent confidence intervals.
Standard errors are computed using a two-step parametric bootstrap procedure with 500 outer replications
and 50 inner replications per outer draw. In Panel (a), the number of bins is selected to minimize the
integrated mean squared error (IMSE) of the semi-linear covariate-adjusted estimator of the conditional
outcome mean (Cattaneo et al. 2024). In Panel (b), bins have a fixed width of 0.02.

9 Conclusion

Regression discontinuity designs (RDDs) are widely used in program evaluation due to their

high internal validity, which stems from the relatively weak continuity assumptions required

to identify average effects for units at the margin between treated and control arms. How-

ever, the extent to which these threshold-specific estimates generalize to nonmarginal units
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remains uncertain, and is often critical for informing policy. Most existing extrapolation

methods rely on statistical assumptions about the joint distribution of outcomes, the run-

ning variable, treatment assignment, and covariates.

In this paper, we adopt a different approach by embedding the RDD in a model of eco-

nomic behavior grounded in first principles. This framework provides a microfoundation for

the running variable and its joint determination with economically related outcomes. By

formally linking reduced-form RDD estimates to structural parameters, we recover primi-

tives and use them to analyze counterfactual scenarios in which the running variable takes

values away from the cutoff. Our approach allows us to infer the levels of relevant outcomes

under both treatment states at nonmarginal realizations of the running variable—thereby

identifying average partial effects beyond the threshold.

Using data from Wisconsin, we estimate that the average arc elasticity of housing prices

with respect to education expenditures is approximately equal to one at the referendum

approval threshold. However, our extrapolation method reveals substantial heterogeneity

away from the cutoff. To the right of the threshold, the average elasticity increases steadily,

implying that the positive capitalization effect estimated at the margin extends to referenda

supported by a larger share of voters. To the left, the average elasticity declines and becomes

negative for ballot measures that garnered limited approval. This pattern indicates that

some rejected proposals would have reduced local housing demand, primarily due to a net

outflow of households with a relatively low willingness to pay for enhanced education services.

Taken together, these findings suggest that housing market responses to locally determined

changes in government spending may vary systematically with the degree of voter support,

underscoring the importance of accounting for nonmarginal variation when evaluating the

incidence and efficiency of local fiscal policies.
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A Causal Interpretation of the Target Estimand

Consider the reduced-form regression discontinuity estimand that uses logPj as the outcome:

lim
s↓0

E [logPj|Sj = s]− lim
s↑0

E [logPj|Sj = s]

= lim
s↓0

E [logPj|Sj = s,Dj = 1]− lim
s↑0

E [logPj|Sj = s,Dj = 0] (A.1)

= lim
s↓0

E [logPj (∆Gj) |Sj = s,Dj = 1]− lim
s↑0

E [logPj (0) |Sj = s,Dj = 0] (A.2)

= lim
s↓0

E [logPj (∆Gj) |Sj = s]− lim
s↑0

E [logPj (0) |Sj = s] (A.3)

= E [logPj (∆Gj) |Sj = 0]− E [logPj (0) |Sj = 0] (A.4)

= E [logPj (∆Gj)− logPj (0) |Sj = 0] (A.5)

= E
[
logPj (∆Gj)− logPj (0)

∆ logGj

×∆ logGj

∣∣∣∣Sj = 0

]
(A.6)

The first and third equalities rely on the definition of the referendum approval indicator,

which allows the conditioning set to be expanded to include the event Dj = 1 or Dj =

0, depending on whether Sj lies above or below the threshold, respectively. The second

equality follows from the fact that, conditional on Dj = 1, the potential outcome Pj (∆Gj)

is observed, and similarly, Pj(0) is observed when Dj = 0. The fourth equality uses the

standard assumption that, for d ∈ {0, 1}, E [Pj (d×∆Gj) |Sj = s] is a continuous function

of s at s = 0. The fifth equality exploits the linearity of the expectation operator. The

sixth equality follows from multiplying and dividing by ∆ logGj. Analogously, consider the

first-stage regression discontinuity estimand that uses Dj ×∆ logGj as the outcome:

lim
s↓0

E [Dj ×∆ logGj|Sj = s]− lim
s↑0

E [Dj ×∆ logGj|Sj = s]

= lim
s↓0

E [Dj ×∆ logGj|Sj = s,Dj = 1]− lim
s↑0

E [Dj ×∆ logGj|Sj = s,Dj = 0] (A.7)

= lim
s↓0

E [∆ logGj|Sj = s,Dj = 1] (A.8)
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= lim
s↓0

E [∆ logGj|Sj = s] (A.9)

= E [∆ logGj|Sj = 0] (A.10)

The first and third equalities rely on the definition of the referendum approval indicator,

which allows the conditioning set to be expanded to include the event Dj = 1 or Dj =

0, depending on whether Sj lies above or below the threshold, respectively. The second

equality exploits the fact that Dj = 1 and Dj = 0 are inside both the integrand and

the conditioning set. The fourth equality uses the assumption that E [∆ logGj|Sj = s] is a

continuous function of s at s = 0. Combining these two identification results yields the fuzzy

regression discontinuity estimand

lims↓0 E [logPj|Sj = s]− lims↑0 E [logPj|Sj = s]

lims↓0 E [Dj ×∆ logGj|Sj = s]− lims↑0 E [Dj ×∆ logGj|Sj = s]

= E
[
logPj (∆Gj)− logPj (0)

∆ logGj

×∆ logGj

∣∣∣∣Sj = 0

]
1

E [∆ logGj|Sj = 0]
(A.11)

= E
[
logPj (∆Gj)− logPj (0)

∆ logGj

∆ logGj

E [∆ logGj|Sj = 0]

∣∣∣∣Sj = 0

]
(A.12)

= E
[
ωj ×

logPj (∆Gj)− logPj (0)

∆ logGj

∣∣∣∣Sj = 0

]
(A.13)

with the weight defined as

ωj ≡
∆ logGj

E [∆ logGj|Sj = 0]
(A.14)

Clearly, E [ωj|Sj = 0] = 1.

B Model Derivations

B.1 Household Utility Maximization

Household i faces the following utility maximization problem in location j:

max
H,X

{
Aij + αi log

Gj

Nχ
j

+ βi logH + γi logX

}
s.t. X + PjH (1 + τj) ≤ Yi and H = 1 (B.15)
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The Lagrangian associated with this maximization problem is

L (H,X;λ) = Aij + αi log
Gj

Nχ
j

+ βi logH + γi logX

− λ (X + PjH (1 + τj)− Yi)− µ (H − 1) (B.16)

The first-order necessary conditions are

∂L (H,X;λ)

∂Hij

=
βi
Hij

− λPj (1 + τj)− µ = 0 (B.17)

∂L (H,X;λ)

∂Xij

=
γi
Xij

− λ = 0 (B.18)

∂L (H,X;λ)

∂λ
= −Xij − PjHij (1 + τj) + Yi = 0 (B.19)

∂L (H,X;λ)

∂µ
= −Hij + 1 = 0 (B.20)

The fourth first-order condition ensures that Hij = 1. Then the budget constraint is

Xij + Pj (1 + τj) = Yi ⇐⇒ Xij = Yi − Pj (1 + τj) (B.21)

The second first-order condition implies that the first Lagrange multiplier is

λ =
γi

Yi − Pj (1 + τj)
(B.22)

which is positive since γi > 0 and households retain positive disposable income. Finally, the

first first-order condition entails that

µ = βi −
γiPj (1 + τj)

Yi − Pj (1 + τj)
(B.23)

The second Lagrange multiplier is positive provided that

βi
γi
>

Pj (1 + τj)

Yi − Pj (1 + τj)
(B.24)
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Plugging the Marshallian demands back into the utility function yields household i’s indirect

utility function:

Vij = Aij + αi log
Gj

Nχ
j

+ βi log 1 + γi log [Yi − Pj (1 + τj)]

= Aij + αi log
Gj

Nχ
j

+ γi log [Yi − Pj (1 + τj)] (B.25)

Furthermore, household i’s valuation of exogenous amenities is Aij ≡ Aj + Uij, with Uij ∼

Gumbel (0, θ). The indirect utility function can thus be re-expressed as follows:

Vij = Aj + αi log
Gj

Nχ
j

+ γi log [Yi − Pj (1 + τj)]︸ ︷︷ ︸
≡vij

+Uij (B.26)

where vij indicates the non-idiosyncratic component of utility. Each household chooses the

location that maximizes their indirect utility. Given the parametric assumption on the

random component of amenity shocks, the probability that household i chooses location j is

Nij =
exp (vij/θ)

1 +
∑

ℓ∈J exp (viℓ/θ)
(B.27)

Let δi ≡ [αi, γi, Yi]
′ be a random vector whose joint probability distribution and support

are denoted with F and D, respectively. Integrating choice probabilities over F yields the

expected mass of households who choose location j:

Nj =

∫
D
Nij (δi) dF (δi) (B.28)

B.2 Equilibrium in the Housing Market

The housing supply equation is

logHS
j = λ+ η logPj +Bj (B.29)
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Since each household consumes exactly one unit of housing, the aggregate demand for housing

in location j is

HD
j =

∫
D
Nij (δi)Hij (δi) dF (δi) (B.30)

=

∫
D
Nij (δi) dF (δi) (B.31)

= Nj (B.32)

Taking logarithms yields

logHD
j = logNj (B.33)

The equilibrium rental rate of housing equates log-demand and log-supply of housing:

logHS
j = logHD

j ⇐⇒ λ+ η logPj +Bj = logNj (B.34)

⇐⇒ logPj =
1

η
logNj − λ̃− B̃j (B.35)

where λ̃ ≡ λ
η
and B̃j ≡ Bj

η
. Plugging the equilibrium rental rate of housing into the equation

for the log-supply of housing yields the equilibrium level of housing space:

logHj = λ+ η logPj +Bj = λ+ logNj − λ−Bj +Bj = logNj (B.36)

Finally, the equilibrium level of housing expenditure in location j is

logPj + logHj =
1

η
logNj − λ̃− B̃j + logNj (B.37)

=
1 + η

η
logNj − λ̃− B̃j (B.38)

B.3 The Government Possibility Frontier

Consider a voter who resides in district j and chooses their preferred level of government

spending Gj. The system of equations implied by the housing market clearing and govern-
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ment balanced budget conditions is

Jj (Gj, Pj, 1 + τj) = logHS
j − logHD

j = 0 (B.39)

Kj (Gj, Pj, 1 + τj) = log τj + logPj + logHS
j − logGj = 0 (B.40)

The goal of this section is to compute the partial derivatives required to solve this system in

its general form. Recall that

Jj ≡ λ+ η logPj +Bj − logNj (B.41)

Kj ≡ log τj + λ+ (1 + η) logPj +Bj − logGj (B.42)

B.3.1 Sum of Exponentials

Recall that the non-idiosyncratic component of utility is

vij ≡ Aj + αi logGj − αiχ logNj + γi log [Yi − Pj (1 + τj)] (B.43)

The probability of household i choosing location j is

Nij =
exp (vij/θ)

1 +
∑

ℓ∈J exp (viℓ/θ)
(B.44)

and the expected mass of households choosing location j is

Nj =

∫
D
Nij (δi) dF (δi) (B.45)

For convenience, define

ϕi ≡
1

1 +
∑

ℓ∈J exp (viℓ/θ)
(B.46)

As a preliminary step, we compute the partial derivatives of ϕi keeping Nj constant:

∂ϕi

∂ logGj

∣∣∣∣
Nj

= −

(
1 +

∑
ℓ∈J

exp (viℓ/θ)

)−2 (αi

θ
exp (vij/θ)

)
(B.47)
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= −αi

θ
ϕi

exp (vij/θ)

1 +
∑

ℓ exp (viℓ/θ)
(B.48)

= −αi

θ
ϕiNij (B.49)

∂ϕi

∂ logPj

∣∣∣∣
Nj

= −

(
1 +

∑
ℓ∈J

exp (viℓ/θ)

)−2(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
exp (vij/θ)

)
(B.50)

=
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
ϕi

exp (vij/θ)

1 +
∑

ℓ∈J exp (viℓ/θ)
(B.51)

=
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
ϕiNij (B.52)

∂ϕi

∂ log (1 + τj)

∣∣∣∣
Nj

= −

(
1 +

∑
ℓ∈J

exp (viℓ/θ)

)−2(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
exp (vij/θ)

)
(B.53)

=
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
ϕi

exp (vij/θ)

1 +
∑

ℓ∈J exp (viℓ/θ)
(B.54)

=
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
ϕiNij (B.55)

B.3.2 Location Choice Probability

We now compute the partial derivatives of Nij keeping Nj constant:

∂Nij

∂ logGj

∣∣∣∣
Nj

=
∂Nij/∂Gj

∂ logGj/∂Gj

∣∣∣∣
Nj

(B.56)

= Gj
∂Nij

∂Gj

∣∣∣∣
Nj

(B.57)

= Gj

(
∂ϕi

∂Gj

∣∣∣∣
Nj

exp (vij/θ) + ϕi exp (vij/θ)
αi

θ

1

Gj

)
(B.58)

= Gj

(
∂ϕi

∂ logGj

∣∣∣∣
Nj

∂ logGj

∂Gj

exp (vij/θ) +Nij
αi

θ

1

Gj

)
(B.59)

= Gj

(
−αi

θ
ϕiNij

1

Gj

exp (vij/θ) +Nij
αi

θ

1

Gj

)
(B.60)

= Gj

(
−αi

θ
Nij

1

Gj

Nij +Nij
αi

θ

1

Gj

)
(B.61)

=
(
−αi

θ
NijNij +Nij

αi

θ

)
(B.62)
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=
αi

θ
Nij (1−Nij) (B.63)

Similarly,

∂Nij

∂ logPj

∣∣∣∣
Nj

=
∂Nij/∂Pj

∂ logPj/∂Pj

∣∣∣∣
Nj

(B.64)

= Pj
∂Nij

∂Pj

∣∣∣∣
Nj

(B.65)

= Pj

(
∂ϕi

∂Pj

∣∣∣∣
Nj

exp (vij/θ)− ϕi exp (vij/θ)
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)

1

Pj

)
(B.66)

= Pj

(
∂ϕi

∂ logPj

∣∣∣∣
Nj

∂ logPj

∂Pj

exp (vij/θ)−Nij
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)

1

Pj

)
(B.67)

= Pj

(
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
ϕiNij

1

Pj

exp (vij/θ)−Nij
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)

1

Pj

)
(B.68)

= Pj

(
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij

1

Pj

Nij −Nij
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)

1

Pj

)
(B.69)

=

(
γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
NijNij −Nij

γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)

)
(B.70)

= −γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) (B.71)

And
∂Nij

∂ log (1 + τj)

∣∣∣∣
Nj

= −γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) (B.72)

Analogously, the partial derivative of Nij with respect to logNj is

∂Nij

∂ logNj

= −αiχ

θ
Nij (1−Nij) (B.73)

Then the partial derivatives of Nij are

∂Nij

∂ logGj

=
∂Nij

∂ logGj

∣∣∣∣
Nj

+
∂Nij

∂ logNj

∂ logNj

∂ logGj

(B.74)

=
∂Nij

∂ logGj

∣∣∣∣
Nj

+
∂Nij

∂ logNj

∂ logNj

∂Nj

∂Nj

∂ logGj

(B.75)
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=
αi

θ
Nij (1−Nij)−

αiχ

θ
Nij (1−Nij)

1

Nj

∂Nj

∂ logGj

(B.76)

=
1

θ
Nij (1−Nij)

(
αi − αiχ

1

Nj

∂Nj

∂ logGj

)
(B.77)

∂Nij

∂ logPj

=
1

θ
Nij (1−Nij)

(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
− αiχ

1

Nj

∂Nj

∂ logPj

)
(B.78)

∂Nij

∂ log (1 + τj)
=

1

θ
Nij (1−Nij)

(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
− αiχ

1

Nj

∂Nj

∂ log (1 + τj)

)
(B.79)

B.3.3 Expected Mass of Households in a Location

Recall that Nj =
∫
DNijdF . Thus,

∂Nj

∂ logGj

=

∫
D

∂Nij

∂ logGj

dF (B.80)

∂Nj

∂ logPj

=

∫
D

∂Nij

∂ logPj

dF (B.81)

∂Nj

∂ log (1 + τj)
=

∫
D

∂Nij

∂ log (1 + τj)
dF (B.82)

Replacing the expressions for the partial derivatives of Nij yields

∂Nj

∂ logGj

=

∫
D

1

θ
Nij (1−Nij)

(
αi −

αiχ

Nj

∂Nj

∂ logGj

)
dF (B.83)

∂Nj

∂ logPj

=

∫
D

1

θ
Nij (1−Nij)

(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
− αiχ

Nj

∂Nj

∂ logPj

)
dF (B.84)

∂Nj

∂ log (1 + τj)
=

∫
D

1

θ
Nij (1−Nij)

(
−γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
− αiχ

Nj

∂Nj

∂ log (1 + τj)

)
dF (B.85)

Rearranging terms,

∂Nj

∂ logGj

+ χ

∫
D

αi

θ
Nij (1−Nij)

1

Nj

∂Nj

∂ logGj

dF =

∫
D

αi

θ
Nij (1−Nij) dF (B.86)

⇐⇒ ∂Nj

∂ logGj

(
1 +

χ

Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
=

∫
D

αi

θ
Nij (1−Nij) dF (B.87)

⇐⇒ ∂Nj

∂ logGj

=

∫
D

αi

θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.88)
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Similarly,

∂Nj

∂ logPj

+ χ

∫
D

αi

θ
Nij (1−Nij)

1

Nj

∂Nj

∂ logPj

dF (B.89)

= −
∫
D

γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) dF (B.90)

⇐⇒ ∂Nj

∂ logPj

(
1 +

χ

Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.91)

= −
∫
D

γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) dF (B.92)

⇐⇒ ∂Nj

∂ logPj

= −

∫
D

γi
θ

Pj(1+τj)

Yi−Pj(1+τj)
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.93)

Finally,

∂Nj

∂ log (1 + τj)
+ χ

∫
D

αi

θ
Nij (1−Nij)

1

Nj

∂Nj

∂ log (1 + τj)
dF (B.94)

= −
∫
D

γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) dF (B.95)

⇐⇒ ∂Nj

∂ log (1 + τj)

(
1 +

χ

Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.96)

= −
∫
D

γi
θ

Pj (1 + τj)

Yi − Pj (1 + τj)
Nij (1−Nij) dF (B.97)

⇐⇒ ∂Nj

∂ log (1 + τj)
= −

∫
D

γi
θ

Pj(1+τj)

Yi−Pj(1+τj)
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.98)

To summarize,

∂Nj

∂ logGj

=

∫
D

αi

θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.99)

∂Nj

∂ logPj

= −

∫
D

γi
θ

Pj(1+τj)

Yi−Pj(1+τj)
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.100)

∂Nj

∂ log (1 + τj)
= −

∫
D

γi
θ

Pj(1+τj)

Yi−Pj(1+τj)
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.101)
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For compactness, define ρij ≡ Pj(1+τj)

Yi−Pj(1+τj)
. Then the partial derivatives of interest can be

expressed as

∂Nij

∂ logGj

=
1

θ
Nij (1−Nij)

(
αi − αi

χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.102)

=
1

θ
Nij (1−Nij)

(
αi

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.103)

=
αi

θ
Nij (1−Nij)

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

(B.104)

∂Nij

∂ logPj

=
1

θ
Nij (1−Nij)

(
−γiρij + αi

χ
Nj

∫
D

γi
θ
ρijNij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.105)

=
1

θ
Nij (1−Nij)

(
−γiρij + (αi − γiρij)

χ
Nj

∫
D

γiρij
θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.106)

∂Nij

∂ log (1 + τj)

=
1

θ
Nij (1−Nij)

(
−γiρij + αi

χ
Nj

∫
D

γiρij
θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.107)

=
1

θ
Nij (1−Nij)

(
−γiρij + (αi − γiρij)

χ
Nj

∫
D

γiρij
θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
(B.108)

B.3.4 System of Equations for the Government Possibility Frontier

As a consequence, the partial derivatives associated with the original system of equations

can be rewritten as follows:

∂Jj
∂ logGj

= −
∫
D

αi

θ
Nij (1−Nij)

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

dF (B.109)

∂Jj
∂ logPj

= η −
∫
D

1

θ
Nij (1−Nij)(

−γiρij + (αi − γiρij)
χ
Nj

∫
D

γiρij
θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
dF (B.110)
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∂Jj
∂ log (1 + τj)

= −
∫
D

1

θ
Nij (1−Nij)(

−γiρij + (αi − γiρij)
χ
Nj

∫
D

γiρij
θ
Nij (1−Nij) dF

1 + χ
Nj

∫
D

αi

θ
Nij (1−Nij) dF

)
dF (B.111)

In addition,

∂Kj

∂ logGj

= −1 (B.112)

∂Kj

∂ logPj

= 1 + η (B.113)

∂Kj

∂ log (1 + τj)
=

1 + τj
τj

(B.114)

For compactness, define the following terms:

α̂j ≡
∫
D

αi

θ
Nij (1−Nij) dF (B.115)

γ̂j ≡
∫
D

γiρij
θ

Nij (1−Nij) dF (B.116)

The partial derivatives in (B.109)-(B.114) can be rewritten as follows:

∂Jj
∂ logGj

= − α̂j

1 + χ
Nj
α̂j

(B.117)

∂Jj
∂ logPj

= η +
γ̂j − χ

Nj
γ̂j (α̂j − γ̂j)

1 + χ
Nj
α̂j

(B.118)

∂Jj
∂ log (1 + τj)

=
γ̂j − χ

Nj
γ̂j (α̂j − γ̂j)

1 + χ
Nj
α̂j

(B.119)

∂Kj

∂ logGj

= −1 (B.120)

∂Kj

∂ logPj

= 1 + η (B.121)

∂Kj

∂ log (1 + τj)
=

1 + τj
τj

(B.122)
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B.3.5 Partial Derivatives with Myopic Voting

The assumption of myopic voting entails that voters perceive jurisdiction boundaries as fixed

and do not account for the mobility implications of a change in local expenditures and taxes.

As a consequence, all of the terms involving a partial derivative of Nj are set to zero. The

resulting partial derivatives from the previous section change as follows. For any district j,

∂Jj
∂ logGj

= 0 (B.123)

∂Jj
∂ logPj

= η (B.124)

∂Jj
∂ log (1 + τj)

= 0 (B.125)

In addition,

∂Kj

∂ logGj

= −1 (B.126)

∂Kj

∂ logPj

= 1 + η (B.127)

∂Kj

∂ log (1 + τj)
=

1 + τj
τj

(B.128)

B.3.6 The Slope of the Government Possibility Frontier

Totally differentiating both equations with respect to their three common arguments yields

∂Jj
∂ logGj

d logGj +
∂Jj

∂ logPj

d logPj +
∂Jj

∂ log (1 + τj)
d log (1 + τj) = 0 (B.129)

∂Kj

∂ logGj

d logGj +
∂Kj

∂ logPj

d logPj +
∂Kj

∂ log (1 + τj)
d log (1 + τj) = 0 (B.130)

For compactness, introduce the following notation:

Jg ≡
∂Jj

∂ logGj

Jp ≡
∂Jj

∂ logPj

Jτ ≡ ∂Jj
∂ log (1 + τj)

Kg ≡
∂Kj

∂ logGj

Kp ≡
∂Kj

∂ logPj

Kτ ≡ ∂Kj

∂ log (1 + τj)

dg ≡ d logGj dp ≡ d logPj dτ ≡ d log (1 + τj)
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The system of equations can thus be rewritten as

Jgdg + Jpdp+ Jτdτ = 0 (B.131)

Kgdg +Kpdp+Kτdτ = 0 (B.132)

First, we compute the total derivative of the rental rate of housing with respect to government

spending. To begin with, we divide both sides of (B.132) by dg and rearrange terms:

Kg +Kp
dp

dg
+Kτ

dτ

dg
= 0 ⇐⇒ dτ

dg
=

−Kg −Kp
dp
dg

Kτ

(B.133)

Then we divide (B.131) by dg and plug (B.133) into it:

Jg + Jp
dp

dg
+ Jτ

dτ

dg
= 0 ⇐⇒ Jg + Jp

dp

dg
+ Jτ

−Kg −Kp
dp
dg

Kτ

= 0 (B.134)

⇐⇒ Jg + Jp
dp

dg
− JτKg

Kτ

− JτKp

Kτ

dp

dg
= 0 (B.135)

⇐⇒ dp

dg

(
Jp −

JτKp

Kτ

)
= −Jg +

JτKg

Kτ

(B.136)

⇐⇒ dp

dg
= −

Jg − JτKg

Kτ

Jp − JτKp

Kτ

(B.137)

⇐⇒ dp

dg
= −JgKτ − JτKg

JpKτ − JτKp

(B.138)

We follow similar steps to compute the total derivative of the property tax rate with respect

to government spending. As above, we divide both sides of (B.132) by dg and rearrange

terms to isolate dp
dg
:

Kg +Kp
dp

dg
+Kτ

dτ

dg
= 0 ⇐⇒ dp

dg
=

−Kg −Kτ
dτ
dg

Kp

(B.139)

Then we divide (B.131) by dg and plug (B.139) into it:

Jg + Jp
dp

dg
+ Jτ

dτ

dg
= 0 ⇐⇒ Jg + Jp

−Kg −Kτ
dτ
dg

Kp

+ Jτ
dτ

dg
= 0 (B.140)

⇐⇒ Jg −
JpKg

Kp

− JpKτ

Kp

dτ

dg
+ Jτ

dτ

dg
= 0 (B.141)
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⇐⇒ dτ

dg

(
Jτ −

JpKτ

Kp

)
= −Jg +

JpKg

Kp

(B.142)

⇐⇒ dτ

dg
= −

Jg − JpKg

Kp

Jτ − JpKτ

Kp

(B.143)

⇐⇒ dτ

dg
= −JgKp − JpKg

JτKp − JpKτ

(B.144)

B.4 Preferred Property Tax Rates

The goal of this section is to derive the property tax rate preferred by any household type k

residing in any area a for any jurisdiction j.

B.4.1 First-Order Conditions

Consider a household in district j choosing their preferred level of government spending.

Recall that household i’s indirect utility stemming from choosing location j is

Vij = Aj + αi logGj − αiχ logNj + γi log [Yi − Pj (1 + τj)] + Uij (B.145)

The derivative of this indirect utility function with respect to government spending is

dVij
d logGj

= αi − αiχ
d logNj

d logGj

− γiρij
d logPj

d logGj

− γiρij
d log (1 + τj)

d logGj

(B.146)

Denoting the amount of government spending preferred by household i as Gij, the first-order

condition associated with the implied maximization problem is

d logPj

d logGj

∣∣∣∣∣
Gj=Gij

+
d log (1 + τj)

d logGj

∣∣∣∣∣
Gj=Gij

=
αi

γiρij

1− χ
d logNj

d logGj

∣∣∣∣∣
Gj=Gij

 (B.147)

B.4.2 Preferred Property Tax Rates with Myopic Voting

Under the assumption that voters are myopic, the total derivative of the rental rate of housing

with respect to government spending becomes

dp

dg
= −JgKτ − JτKg

JpKτ − JτKp

= 0 (B.148)
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Similarly, the total derivative of the tax rate with respect to government spending is

dτ

dg
= −JgKp − JpKg

JτKp − JpKτ

=
τj

1 + τj
(B.149)

We can finally compute the slope of the Government Possibility Frontier:

d logPj

d logGj

+
d log (1 + τj)

d logGj

= 0 +
τj

1 + τj
=

τj
1 + τj

(B.150)

Since
d logNj

d logGj
= 0 by assumption, household i’s preferred property tax rate τij solves the

first-order condition (B.147):

τij
1 + τij

=
αi

γiρij
⇐⇒ τij = max

{
αi

γiρij − αi

, 0

}
(B.151)

B.4.3 Second-Order Conditions

The goal of this section is to determine whether τij is indeed a maximizer of Vij. When

voters are assumed to be myopic, the first derivative in (B.146) is

dVij
d logGj

= αi − γiρij
τj

1 + τj
(B.152)

where τj is implicitly a function of logGj. The second derivative of the objective function

then is
d2Vij
d logG2

j

= −γiρij
dτj

d logGj

1

1 + τ 2j
(B.153)

By an application of the chain rule,

d log (1 + τj)

d logGj

=
d log (1 + τj)

dτj

dτj
d logGj

=
1

1 + τj

dτj
d logGj

(B.154)

Rearranging terms,

dτj
d logGj

= (1 + τj)
d log (1 + τj)

d logGj

= (1 + τj)
τj

1 + τj
= τj (B.155)
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Combining previous derivations, the second derivative of the indirect utility with respect to

(log) government spending is
d2Vij
d logG2

j

= −γiρij
τj

1 + τ 2j
(B.156)

which is strictly negative because γi, ρij, and τj are strictly positive, implying that the

indirect utility Vij is a strictly concave function of logGj. Thus, τij attains the unique global

maximum of Vij provided that it is an interior solution.

C Identification of Model Parameters

This section outlines how we identify the structural parameters of our spatial equilibrium

model using regression discontinuity designs.

C.1 Outcome Elasticities with respect to Expenditure Changes

First, we compute the elasticity of any equilibrium variable at location ℓ ∈ J with respect to

school district j’s expenditure change Gj. Unlike derivations pertaining to the Government

Possibility Frontier, we consider the response of all equilibrium variables to a discrete change

in government spending.

C.1.1 Household Supply

The expected mass of households who choose location j is

Nk
j = σk

exp
(
vkj /θ

k
)

1 +
∑

ℓ∈J exp
(
vkℓ /θ

k
) (C.157)

where σk denotes the mass of type-k households in the economy and

vkℓ ≡ Aℓ + αk logGℓ − χαk logNℓ + γk log
[
yk − Pℓ (1 + τℓ)

]
(C.158)
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We wish to derive an expression for the difference between logged population mass with and

without referendum approval:

∆ logNk
j ≡ logNk

j (∆Gj)− logNk
j (0) (C.159)

where ∆Gj is the proposed expenditure hike on which residents vote. To keep notation

compact, we express potential outcomes as functions of a binary treatment state indicating

referendum approval, so that ∆ logNk
j ≡ logNk

j (1)− logNk
j (0). Then

∆ logNk
j = log σk +

vkj (1)

θk
− log

(
1 +

∑
ℓ∈J

exp

(
vkℓ (1)

θk

))

− log σk −
vkj (0)

θk
+ log

(
1 +

∑
ℓ∈J

exp

(
vkℓ (0)

θk

))
(C.160)

=
∆vkj
θk

−

(
log

(
1 +

∑
ℓ∈J

exp

(
vkℓ (1)

θk

))
− log

(
1 +

∑
ℓ∈J

exp

(
vkℓ (0)

θk

)))
(C.161)

=
∆vkj
θk

−
(
logZk (1)− logZk (0)

)
(C.162)

First,

∆vkj
θk

=
αk

θk
∆ logGj −

χαk

θk
∆ logNj −

γkρkj
θk

∆ logPj −
γkρkj
θk

∆ log (1 + τj) (C.163)

where ρkj ≡
Pj(1+τj)

yk−Pj(1+τj)
. Second, for any t ∈ [0, 1],

vkℓ,t = vkℓ (0) + t
[
vkℓ (1)− vkℓ (0)

]
(C.164)

and define

Zk
t ≡ 1 +

∑
ℓ∈J

exp

(
vkℓ,t
θk

)
(C.165)
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Clearly, Zk
t = Zk (0) if t = 0 and Zk

t = Zk (1) if t = 1. Then

logZk (1)− logZk (0)

=

∫ 1

0

d

dt
logZk

t dt (C.166)

=

∫ 1

0

1

Zk
t

(
1 +

∑
ℓ∈J

exp

(
vkℓ,t
θk

))
vkℓ (1)− vkℓ (0)

θk
dt (C.167)

=

∫ 1

0

∑
ℓ

Nk
ℓ,t

σk

vkℓ (1)− vkℓ (0)

θk
dt (C.168)

=
∑
ℓ

vkℓ (1)− vkℓ (0)

θk

∫ 1

0

Nk
ℓ,t

σk
dt (C.169)

=
∑
ℓ

∆vkℓ
θk

∫ 1

0

Nk
ℓ,t

σk
dt (C.170)

The first equality exploits the Fundamental Theorem of Calculus. The second equality follows

from an application of the chain rule. The third equality defines Nk
ℓ,t ≡ σk

exp

(
vkℓ,t

θk

)

1+
∑

m∈J exp

(
vkm,t

θk

) .
In addition, we define the mean-value population mass in location ℓ as

N
k

ℓ ≡
∫ 1

0

Nk
ℓ,tdt (C.171)

To summarize,

logZk (1)− logZk (0) =
∑
ℓ

N
k

ℓ

σk

∆vkℓ
θk

(C.172)

Because Nk
ℓ,t is continuous on [0, 1], the mean-value theorem for integrals states that there

exists a point t∗ℓ ∈ (0, 1) such that Nk
ℓ,t = Nk

ℓ,t∗ℓ
. A solution that is both second-order-accurate

and pragmatic is the mid-point value:

N
k

ℓ ≈
Nk

ℓ (0) +Nk
ℓ (1)

2
≡ Ñk

ℓ (C.173)

Combining previous derivations,

logZk (1)− logZk (0)
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≈
∑
ℓ

Nk
ℓ (0) +Nk

ℓ (1)

2σk

∆vkℓ
θk

(C.174)

=
∑
ℓ

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ −

χαk

θk
∆ logNℓ −

γkρkℓ
θk

∆ logPℓ −
γkρkℓ
θk

∆ log (1 + τℓ)

)
(C.175)

Finally, the difference between log household supply in the two treatment states is

∆ logNk
j

≈ αk

θk
∆ logGj −

χαk

θk
∆ logNj −

γkρkj
θk

∆ logPj −
γkρkj
θk

∆ log (1 + τj)

−
∑
ℓ

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ −

χαk

θk
∆ logNℓ −

γkρkℓ
θk

∆ logPℓ −
γkρkℓ
θk

∆ log (1 + τℓ)

)
(C.176)

Finally, we divide both sides by the proposed change in log school district spending:

∆ logNk
j

∆ logGj

≈ αk

θk
− χαk

θk
∆ logNj

∆ logGj

−
γkρkj
θk

∆ logPj

∆ logGj

−
γkρkj
θk

∆ log (1 + τj)

∆ logGj

−
∑
ℓ

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ

∆ logGj

− χαk

θk
∆ logNℓ

∆ logGj

− γkρkℓ
θk

∆ logPℓ

∆ logGj

− γkρkℓ
θk

∆ log (1 + τℓ)

∆ logGj

)
(C.177)

=

(
1−

Ñk
j

σk

)(
αk

θk
− χαk

θk
∆ logNj

∆ logGj

−
γkρkj
θk

∆ logPj

∆ logGj

−
γkρkj
θk

∆ log (1 + τj)

∆ logGj

)

−
∑
ℓ̸=j

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ

∆ logGj

− χαk

θk
∆ logNℓ

∆ logGj

− γkρkℓ
θk

∆ logPℓ

∆ logGj

− γkρkℓ
θk

∆ log (1 + τℓ)

∆ logGj

)
(C.178)

For any location j′ ̸= j, analogous derivations yield

∆ logNk
j′

∆ logGj

≈

(
1−

Ñk
j′

σk

)(
αk

θk
∆ logGj′

∆ logGj

− χαk

θk
∆ logNj′

∆ logGj

−
γkρkj′

θk
∆ logPj′

∆ logGj

−
γkρkj′

θk
∆ log (1 + τj′)

∆ logGj

)

−
∑
ℓ ̸=j′

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ

∆ logGj

− χαk

θk
∆ logNℓ

∆ logGj

− γkρkℓ
θk

∆ logPℓ

∆ logGj

− γkρkℓ
θk

∆ log (1 + τℓ)

∆ logGj

)
(C.179)
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C.1.2 Rental Rate of Housing

In any location ℓ, the equilibrium rental rate of housing is

logPℓ =
1

η
log
∑
k

Nk
ℓ − λ

η
− Bℓ

η
(C.180)

We wish to compute ∆ logPℓ ≡ logPℓ (1)− logPℓ (0). To begin with,

∆ logPℓ =
1

η

(
log
∑
k

Nk
ℓ (1)− log

∑
k

Nk
ℓ (0)

)
(C.181)

Now define

Mℓ (0) ≡
∑
k

Nk
ℓ (0) Mℓ (1) ≡

∑
k

Nk
ℓ (1) (C.182)

For any t ∈ [0, 1],

Nk
ℓ,t = Nk

ℓ (0) + t
[
Nk

ℓ (1)−Nk
ℓ (0)

]
(C.183)

and define

Mℓ,t ≡
∑
k

Nk
ℓ,t (C.184)

Clearly, Mℓ,t =Mℓ (0) if t = 0 and Mℓ,t =Mℓ (1) if t = 1. Then

logMℓ (1)− logMℓ (0)

=

∫ 1

0

d logMℓ,t

dt
dt (C.185)

=

∫ 1

0

1

Mℓ,t

∑
k

[
Nk

ℓ (1)−Nk
ℓ (0)

]
dt (C.186)

=

∫ 1

0

∑
k

Nk
ℓ,t

Mℓ,t

Nk
ℓ (1)−Nk

ℓ (0)

Nk
ℓ,t

dt (C.187)

=

∫ 1

0

∑
k

Nk
ℓ,t

Mℓ,t

d logNk
ℓ,t

dt
dt (C.188)

=
∑
k

∫ 1

0

Nk
ℓ,t

Mℓ,t

d logNk
ℓ,t

dt
dt (C.189)

=
∑
k

∆ logNk
ℓ

∫ 1

0

Nk
ℓ,t

Mℓ,t

d logNk
ℓ,t

dt

1

∆ logNk
ℓ

dt (C.190)
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The first equality uses the Fundamental Theorem of Calculus. The second and fourth equal-

ities apply the chain rule. The third equality multiplies and divides by Nk
ℓ,t. Now define the

mean-value weight as

L
k

ℓ ≡
∫ 1

0

Nk
ℓ,t

Mℓ,t

d logNk
ℓ,t

dt

1

∆ logNk
ℓ

dt (C.191)

=

∫ 1

0

Nk
ℓ,t

Mℓ,t

∆Nk
ℓ

Nk
ℓ,t

1

∆ logNk
ℓ

dt (C.192)

=

∫ 1

0

1

Mℓ,t

∆Nk
ℓ

∆ logNk
ℓ

dt (C.193)

=
∆Nk

ℓ

∆ logNk
ℓ

∫ 1

0

1

Mℓ,t

dt (C.194)

=
∆Nk

ℓ

∆ logNk
ℓ

∆ logMℓ

∆Mℓ

(C.195)

Thus,

L
k

ℓ =
∆Nk

ℓ

∆Mℓ

∆ logMℓ

∆ logNk
ℓ

(C.196)

To summarize,

logMℓ (1)− logMℓ (0) =
∑
k

L
k

ℓ∆ logNk
ℓ (C.197)

Because Nk
ℓ,t is continuous on [0, 1], the mean-value theorem for integrals states that there

exists a point t∗ℓ ∈ (0, 1) such that
Nk

ℓ,t

Mℓ,t
=

Nk
ℓ,t∗

ℓ

Mℓ,t∗
ℓ

. A solution that is both second-order-accurate

and pragmatic is the mid-point value:

L
k

ℓ ≈
Nk

ℓ (0) +Nk
ℓ (1)∑

m [Nm
ℓ (0) +Nm

ℓ (1)]
≡ L̃k

ℓ (C.198)

Combining previous derivations,

logMℓ (1)− logMℓ (0) ≈
∑
k

L̃k
ℓ∆ logNk

ℓ (C.199)

Finally, the difference between log inverse housing demand in the two treatment states is

∆ logPℓ ≈
1

η

∑
k

L̃k
ℓ∆ logNk

ℓ (C.200)
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Finally, we divide both sides by the proposed change in log school district spending:

∆ logPℓ

∆ logGj

≈ 1

η

∑
k

L̃k
ℓ

∆ logNk
ℓ

∆ logGj

(C.201)

C.1.3 Housing Units

In any location ℓ, the equilibrium number of housing units is

logHℓ = λ+ η logPℓ +Bℓ (C.202)

We wish to compute ∆ logHℓ ≡ logHℓ (1)− logHℓ (0). Trivially,

∆ logHℓ = η∆ logPℓ (C.203)

Finally, we divide both sides by the proposed change in log school district spending:

∆ logHℓ

∆ logGj

= η
∆ logPℓ

∆ logGj

(C.204)

C.1.4 Balanced Budget

In any location ℓ, the balanced budget condition is

logGℓ = log τℓ + logPℓ + logHℓ (C.205)

We wish to compute ∆ logGℓ ≡ logGℓ (1)− logGℓ (0). Trivially,

∆ logGℓ = ∆ log τℓ +∆ logPℓ +∆ logHℓ (C.206)

Finally, we divide both sides by the proposed change in log school district spending:

∆ logGℓ

∆ logGj

=
∆ log τℓ
∆ logGj

+
∆ logPℓ

∆ logGj

+
∆ logHℓ

∆ logGj

(C.207)
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C.2 Identification with Regression Discontinuity Estimands

We now translate the elasticities obtained above into a system of linear equations, where

the unknowns are structural parameters and the known terms correspond to regression dis-

continuity estimands. This mapping is obtained by taking expectations with respect to the

joint distribution of the model’s unobservables and conditioning on Sj = 0.5, under which

regression discontinuity estimands identify weighted averages of elasticities.

C.2.1 Household Supply

The elasticity of household supply in location j with respect to a change in school district

expenditures in location j (equation C.179) is

∆ logNk
j

∆ logGj

≈

(
1−

Ñk
j

σk

)(
αk

θk
− χαk

θk
∆ logNj

∆ logGj

−
γkρkj
θk

∆ logPj

∆ logGj

−
γkρkj
θk

∆ log (1 + τj)

∆ logGj

)

−
∑
ℓ̸=j

Ñk
ℓ

σk

(
αk

θk
∆ logGℓ

∆ logGj

− χαk

θk
∆ logNℓ

∆ logGj

− γkρkℓ
θk

∆ logPℓ

∆ logGj

− γkρkℓ
θk

∆ log (1 + τℓ)

∆ logGj

)
(C.208)

Taking expectations of both sides with respect to the joint probability distribution of the

unobservables and conditioning on the running variable being equal to the cutoff yields the

following equation:

E

[
∆ logNk

j

∆ logGj

∣∣∣∣∣Sj = 0.5

]
=
αk

θk
× E

[(
1−

Ñk
j

σk

)∣∣∣∣∣Sj = 0.5

]

− χαk

θk
× E

[(
1−

Ñk
j

σk

)
∆ logNj

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− γk

θk
× E

[
ρkj

(
1−

Ñk
j

σk

)
∆ logPj

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− γk

θk
× E

[
ρkj

(
1−

Ñk
j

σk

)
∆ log (1 + τj)

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− αk

θk
×
∑
ℓ̸=j

E

[
Ñk

ℓ

σk

∆ logGℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
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+
χαk

θk
×
∑
ℓ̸=j

E

[
Ñk

ℓ

σk

∆ logNℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]

+
γk

θk
×
∑
ℓ̸=j

E

[
ρkℓ
Ñk

ℓ

σk

∆ logPℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]

+
γk

θk
×
∑
ℓ̸=j

E

[
ρkℓ
Ñk

ℓ

σk

∆ log (1 + τℓ)

∆ logGj

∣∣∣∣∣Sj = 0.5

]
(C.209)

For any location j′ ̸= j, analogous derivations yield the following equation:

E

[
∆ logNk

j′

∆ logGj

∣∣∣∣∣Sj = 0.5

]
=
αk

θk
× E

[(
1−

Ñk
j′

σk

)
∆ logGj′

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− χαk

θk
× E

[(
1−

Ñk
j′

σk

)
∆ logNj′

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− γk

θk
× E

[
ρkj′

(
1−

Ñk
j′

σk

)
∆ logPj′

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− γk

θk
× E

[
ρkj′

(
1−

Ñk
j′

σk

)
∆ log (1 + τj′)

∆ logGj

∣∣∣∣∣Sj = 0.5

]

− αk

θk
× E

[
Ñk

j

σk

∣∣∣∣∣Sj = 0.5

]

− αk

θk
×
∑
ℓ̸=j,j′

E

[
Ñk

ℓ

σk

∆ logGℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]

+
χαk

θk
×
∑
ℓ̸=j′

E

[
Ñk

ℓ

σk

∆ logNℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]

+
γk

θk
×
∑
ℓ̸=j′

E

[
ρkℓ
Ñk

ℓ

σk

∆ logPℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]

+
γk

θk
×
∑
ℓ̸=j′

E

[
ρkℓ
Ñk

ℓ

σk

∆ log (1 + τℓ)

∆ logGj

∣∣∣∣∣Sj = 0.5

]
(C.210)
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C.2.2 Rental Rate of Housing

The elasticity of housing demand in location ℓ ∈ J with respect to a change in school district

expenditures in location j (equation C.201) is

∆ logPℓ

∆ logGj

≈ 1

η

∑
k

L̃k
ℓ

∆ logNk
ℓ

∆ logGj

(C.211)

Taking expectations of both sides with respect to the joint probability distribution of the

unobservables and conditioning on the running variable being equal to the cutoff yields the

following equation:

E

[
∆ logPℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
=

1

η
×
∑
k

E

[
L̃k
ℓ

∆ logNk
ℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
(C.212)

C.2.3 Housing Units

The elasticity of housing supply in location ℓ ∈ J with respect to a change in school district

expenditures in location j (equation C.204) is

∆ logHℓ

∆ logGj

= η
∆ logPℓ

∆ logGj

(C.213)

Taking expectations of both sides with respect to the joint probability distribution of the

unobservables and conditioning on the running variable being equal to the cutoff yields the

following equation:

E

[
∆ logHℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
= η × E

[
∆ logPℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
(C.214)

C.2.4 Balanced Budget

The elasticity of school district expenditures in location ℓ ∈ J with respect to a change in

school district expenditures in location j (equation C.207) is

∆ logGℓ

∆ logGj

=
∆ log τℓ
∆ logGj

+
∆ logPℓ

∆ logGj

+
∆ logHℓ

∆ logGj

(C.215)
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Taking expectations of both sides with respect to the joint probability distribution of the

unobservables and conditioning on the running variable being equal to the cutoff yields the

following equation:

E

[
∆ logGℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
= E

[
∆ log τℓ
∆ logGj

∣∣∣∣∣Sj = 0.5

]

+ E

[
∆ logPℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
+ E

[
∆ logHℓ

∆ logGj

∣∣∣∣∣Sj = 0.5

]
(C.216)

D Statistical Inference on Structural Parameters

In this section, we provide details on statistical inference for the structural parameters that

govern household preferences and the elasticity of housing supply.

D.1 Household Preferences

Assume there are two jurisdictions (|J | = 2) and set χ = 1. For compactness, let θn

denote the nth regression discontinuity estimand, with the numbering following the order of

appearance in equations (C.209)-(C.210). The system of equations can then be written as

θ1 = α (θ2 − θ3 − θ6 + θ7) + γ (−θ4 − θ5 + θ8 + θ9)

θ10 = α (θ11 − θ12 − θ15 + θ16) + γ (−θ13 − θ14 + θ17 + θ18)

(D.217)

Define the intermediate sums

ψ1 ≡ θ2 − θ3 − θ6 + θ7 ξ1 ≡ −θ4 − θ5 + θ8 + θ9, (D.218)

ψ2 ≡ θ11 − θ12 − θ15 + θ16 ξ2 ≡ −θ13 − θ14 + θ17 + θ18 (D.219)

With these definitions, the system can be expressed in matrix form asψ1 ξ1

ψ2 ξ2

α
γ

 =

 θ1
θ10

 (D.220)
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where the determinant of the coefficient matrix is given by ∆ ≡ ψ1ξ2 − ψ2ξ1 ̸= 0. The

solution to the system is then

α =
θ1ξ2 − θ10ξ1

∆
γ =

ψ1θ10 − ψ2θ1
∆

(D.221)

Let θ̂ =
[
θ̂1, . . . , θ̂18

]′
denote the vector of estimated regression discontinuity parameters,

with associated variance-covariance matrix Σ̂θ. We compute the Jacobian matrix of [α, γ]′

with respect to the vector of underlying estimands, yielding

J =
1

∆



ξ2 −ψ2

−αξ2 θ10 − γξ2

αξ2 −θ10 + γξ2

θ10 − αψ2 −γψ2

θ10 − αψ2 −γψ2

αξ2 −θ10 + γξ2

−αξ2 θ10 − γξ2

−θ10 + αψ2 γψ2

−θ10 + αψ2 γψ2

−ξ1 ψ1

αξ1 −θ1 + γξ1

−αξ1 θ1 − γξ1

−θ1 + αψ1 γψ1

−θ1 + αψ1 γψ1

−αξ1 θ1 − γξ1

αξ1 −θ1 + γξ1

θ1 − αψ1 −γψ1

θ1 − αψ1 −γψ1



′

(D.222)
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where each row corresponds to a partial derivative with respect to θn for n = 1, . . . , 18.

Let [α̂, γ̂]′ denote the estimate of [α, γ]′. Substituting estimated parameters into the Jaco-

bian yields the matrix Ĵ. By an application of the Delta method, the estimated variance-

covariance matrix of [α̂, γ̂]′ is

 V [α̂] C [α̂, γ̂]

C [α̂, γ̂] V [γ̂]

 ≈ ĴΣ̂θĴ
′

(D.223)

Finally, applying the Delta method to the ratio α/γ, the variance of the estimator α̂/γ̂ is

approximated by

V [α̂/γ̂] ≈
[
1/γ̂ −α̂/γ̂2

]
ĴΣ̂θĴ

′

 1/γ̂

−α̂/γ̂2

 (D.224)

D.2 Elasticity of Housing Supply

As described in equation (C.214), the housing supply elasticity η is point identified as the

ratio of two regression discontinuity estimands, whose outcomes are housing quantity H and

housing price P , respectively. Let θH and θP denote these estimands, with corresponding

estimators θ̂H and θ̂P . By the Delta method, the estimated variance of η̂ is

V [η̂] ≈
[
1/θ̂P −θ̂H/θ̂2P

] V
[
θ̂H

]
C
[
θ̂H , θ̂L

]
C
[
θ̂H , θ̂L

]
V
[
θ̂P

]
 1/θ̂P

−θ̂H/θ̂2P

 (D.225)
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