The Common Trends Restriction and Dynamic Models of Economic Choice: a Reconciliation

Francesco Ruggieri

February 7, 2023

Francesco Ruggieri

Common Trends and Dynamic Models of Economic Choice

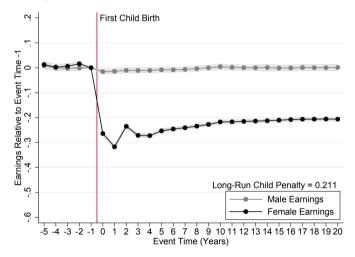
February 7, 2023

- Difference-in-differences (DiD) designs are widely used for **policy evaluation**
- Recent methodological interest in designs with staggered adoption of an absorbing treatment
- This literature has focused on:
 - The causal interpretation of linear regression coefficients under treatment effect heterogeneity
 - @ The construction of alternative estimands that are immune to the shortcomings of linear regression

- Identification in DiD designs hinges on no anticipation and common trends restrictions
- These assumptions are typically stated within a dynamic potential outcomes (DPO) model
- DPO models do not require empiricists to specify a behavioral model of economic choice
- However, design assumptions in DPOs may mask the implied restrictions on dynamic selection
- This concern is especially salient if agents choose to sort into the treated arm...

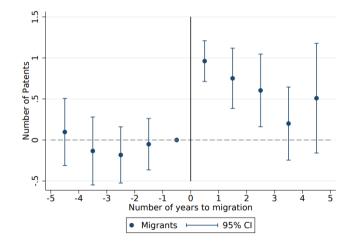
Motivating Example: Kleven, Landais, and Søgaard (2019)

• A staggered DiD design around the time of child birth to estimate its effect on earnings



Motivating Example: Prato (2022)

• A staggered DiD design around the time of migration to estimate its effect on patenting



This Discussion

- A recent set of papers investigates the economic content of the common trends assumption:
 - 1 Selection and Parallel Trends (March 2022), by Ghanem, Sant'Anna, and Wütrich
 - 2 Parallel Trends and Dynamic Choices (July 2022), by Marx, Tamer, and Tang
 - 8 Not All Differences-in-Differences Are Equally Compatible with Outcome-Based Selection Models (October 2022), by de Chaisemartin and d'Haultfœuille
- Each of these papers maps standard DPOs to economic models of the outcome
- I will ignore #3 (a short note) and focus on #1, while drawing applications from #2

Ø Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

4 Conclusion

2 Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

④ Conclusion

Model

• *n* units are indexed by $i \in \{1, ..., n\}$ and observed for two time periods indexed by $t \in \{1, 2\}$

Model

- $D_{it} \in \{0,1\}$ indicates unit *i*'s **treatment assignment** at the *beginning* of period *t*
- $Y_{it} \in \mathbb{R}$ measures unit *i*'s **outcome** at the *end* of period *t*
- Sharp design: the treatment is not available in t = 1, i.e., $\mathbb{P}(D_{i1} = 0) = 1$
 - Marx, Tamer, and Tang (2022) considers the richer environment allowed for by fuzzy designs
- One-to-one mapping between treatment paths and time-invariant groups

$$(D_{i1}, D_{i2}) = (0, 0) \iff G_i = 0$$
 and $(D_{i1}, D_{i2}) = (0, 1) \iff G_i = 1$

• Following Robins (1986), a **dynamic potential outcomes** model with $Y_{it}(g)$ and $g \in \{0,1\}$

Model

• A separable model for the untreated potential outcome,

$$Y_{it}(0) = A_i + \beta_t + U_{it}$$
 with $\mathbb{E}[U_{it}] = 0$

The following analysis extends to **nonseparable models** such as $Y_{it}(0) = h_t(A_i, U_{it})$

• A general model of **sorting** into the treated arm,

$$G_i = g(A_i, U_{i1}, U_{i2}, K_i, V_{i1}, V_{i2})$$

where (K_i, V_{i1}, V_{i2}) are unobserved determinants of the **choice to be treated**

2 Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

④ Conclusion

Common Trends and Unrestricted Selection

Assumption (CT): Common Trends in Untreated Potential Outcomes

 $Y_{i2}(0) - Y_{i1}(0)$ is mean independent of G_i .

• Let \mathcal{G}_{all} be the class of all selection mechanisms possibly implied by $g(A_i, U_{i1}, U_{i2}, K_i, V_{i1}, V_{i2})$

Proposition 1: Necessary Conditions for (CT) and $g \in \mathcal{G}_{all}$

Assumption (CT) holds for any $g \in \mathcal{G}_{all}$ only if $U_{i1} = U_{i2}$ almost surely.

- (CT) is incompatible with both unrestricted selection and time-varying unobservables
- Because $U_{i1} = U_{i2}$ a.s. is an implausible assumption, it is necessary to restrict selection

Common Trends and Restricted Selection

• Consider a restricted class of selection mechanisms,

$$\mathcal{G}_{1} = \left\{ g \in \mathcal{G}_{\mathsf{all}} : g\left(a, u_{1}, u_{2}, k, v_{1}, v_{2}\right) = \tilde{g}\left(a, u_{1}, k, v_{1}, v_{2}\right) \right\}$$

• G_1 restricts sorting **not** to depend on unobserved, time-specific shocks to $Y_{i2}(0)$

Proposition 2: Necessary Conditions for (CT) and $g \in G_1$

Assumption (CT) holds for any $g \in \mathcal{G}_1$ only if $\mathbb{E}[U_{i2}|A_i, U_{i1}] = U_{i1}$ almost surely.

- If selection does not depend on U_{i2} , (CT) is compatible with $\mathbb{P}(U_{i1} = U_{i2}) \in [0, 1)$
- However, time-varying unobservables must satisfy a martingale-type restriction

Common Trends and Further Restricted Selection

• Consider a further restricted class of selection mechanisms,

$$\mathcal{G}_{2} = \{g \in \mathcal{G}_{\mathsf{all}} : g(a, u_{1}, u_{2}, k, v_{1}, v_{2}) = \tilde{g}(a, k, v_{1}, v_{2})\}$$

• G_2 restricts sorting **not** to depend on unobserved, time-specific shocks to $Y_{i1}(0)$ and $Y_{i2}(0)$

Proposition 3: Necessary Conditions for (CT) and $g \in G_2$

Assumption (CT) holds for any $g \in G_2$ only if $\mathbb{E}[U_{i2}|A_i] = \mathbb{E}[U_{i1}|A_i]$ almost surely.

- If selection does not depend on U_{i1} and U_{i2} , (CT) is compatible with $\mathbb{P}(U_{i1} = U_{i2}) \in [0, 1)$
- However, the conditional mean of time-varying unobservables must be stationary

Takeaways from Necessary Conditions

- For practically relevant purposes, common trends implies restrictions on sorting behavior
- Tighter restrictions on selection allow for weaker restrictions on time-varying unobservables
- This trade-off illustrates the economic content embedded in the common trends assumption

2 Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

④ Conclusion

A Two-Period Model of Migration

- To guide the intuition, consider a two-period model of migration
 - In t = 1, agents live in their home country
 - At the beginning of t = 2, they choose whether to stay $(G_i = 0)$ or move $(G_i = 1)$
- Let Y_{it} denote **earnings** and assume that $Y_{it}(0) = A_i + \beta_t + U_{it}$
 - A_i interpretable as the **permanent skill-related** component of earnings
 - β_t interpretable as the **business cycle** component of earnings in the home country

A Two-Period Model of Migration with Selection on the Level

- Consider a choice model that features selection on the level
- An agent migrates if lifetime earnings in their home country are below a subsistence level c,

$$G_{i} \equiv \mathbb{I}\left[\mathbb{E}\left[Y_{i1}\left(0\right) + \delta Y_{i2}\left(0\right) | \mathcal{I}_{i}\right] \leq c\right]$$

where $\delta \in [0, 1]$ is a discount factor and \mathcal{I}_i denotes agent *i*'s information set

• Rearranging terms,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[(1+\delta)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i\right] \leq \tilde{c}\right]$$

with $\tilde{c} \equiv c - \beta_1 - \delta \beta_2$

A Two-Period Model of Migration with Selection on the Gain

- Consider a choice model that features selection on the gain, i.e., a Roy model
- Let K_i and V_{i2} denote an individual-specific migration cost and earnings benefit, respectively
- Migration is a choice described by a simple dynamic program:

$$W_{i1} \equiv \mathbb{E}\left[Y_{i1}\left(0
ight) + \delta \max_{g \in \{0,1\}} \left\{W_{i2}\left(g
ight)
ight\} \left|\mathcal{I}_{i}
ight]
ight]$$

with $W_{i2}\left(0
ight)\equiv Y_{i2}\left(0
ight)$ and $W_{i2}\left(1
ight)\equiv Y_{i2}\left(1
ight)-\mathcal{K}_{i}$

• An individual migrates $(G_i = 1)$ if and only if $\underbrace{\mathbb{E}[V_{i2}|\mathcal{I}_i]}_{\text{expected benefit}} \ge \underbrace{\mathbb{E}[K_i|\mathcal{I}_i]}_{\text{expected cost}}$

• A restricted class of selection mechanisms,

$$\mathcal{G}_{1} = \left\{ g \in \mathcal{G}_{\mathsf{all}} : g\left(a, u_{1}, u_{2}, k, v_{1}, v_{2}\right) = \tilde{g}\left(a, u_{1}, k, v_{1}, v_{2}\right) \right\}$$

Proposition 3: Sufficient Conditions for (CT) with $g \in G_1$

Assumption (CT) holds for any $g\in \mathcal{G}_1$ if

 $\mathbb{E}\left[U_{i2}|A_{i}, U_{i1}\right] = U_{i1} \text{ a.s. and } (K_{i}, V_{i1}, V_{i2}) |A_{i}, U_{i1}, U_{i2} \overset{d}{\sim} (K_{i}, V_{i1}, V_{i2}) |A_{i}, U_{i1}$

• The first condition is also **necessary** for (CT) (Proposition 1)

• With selection on the level,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[(1+\delta)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i\right] \leq \tilde{c}\right]$$

If $\mathcal{I}_i = \{A_i, U_{i1}, U_{i2}\}$, (CT) is implied by $\delta = 0$ (full discounting)

• With selection on the gain,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[V_{i2}|\mathcal{I}_i\right] \geq \mathbb{E}\left[K_i|\mathcal{I}_i\right]\right]$$

If $\mathcal{I}_{i} = \{K_{i}, V_{i2}\}$, (CT) is implied by $(K_{i}, V_{i2}) | A_{i}, U_{i1}, U_{i2} \stackrel{d}{\sim} (K_{i}, V_{i2}) | A_{i}, U_{i1}$

• A further restricted class of selection mechanisms,

$$\mathcal{G}_{2} = \left\{ g \in \mathcal{G}_{\mathsf{all}} : g\left(a, u_{1}, u_{2}, k, v_{1}, v_{2}\right) = \tilde{g}\left(a, k, v_{1}, v_{2}\right) \right\}$$

Proposition 4: Sufficient Conditions for (CT) with $g \in G_2$

Assumption (CT) holds for any $g\in \mathcal{G}_2$ if

 $\mathbb{E}\left[U_{i2}|A_i\right] = \mathbb{E}\left[U_{i1}|A_i\right] \quad \text{a.s.} \quad \text{and} \quad \left(K_i, V_{i1}, V_{i2}\right)|A_i, U_{i1}, U_{i2} \stackrel{d}{\sim} \left(K_i, V_{i1}, V_{i2}\right)|A_i$

• The first condition is also **necessary** for (CT) (Proposition 2)

• With selection on the level,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[\left(1+\delta\right)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i
ight] \leq \tilde{c}
ight]$$

If $\mathcal{I}_i = \{A_i, U_{i1}, U_{i2}\}$, (CT) is implied by $\delta = 0$ (full discounting) and $U_{i1} = 0$ almost surely

• With selection on the gain,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[V_{i2}|\mathcal{I}_i\right] \geq \mathbb{E}\left[K_i|\mathcal{I}_i\right]\right]$$

If $\mathcal{I}_{i} = \{K_{i}, V_{i2}\}$, (CT) is implied by $(K_{i}, V_{i2}) | A_{i}, U_{i1}, U_{i2} \stackrel{d}{\sim} (K_{i}, V_{i2}) | A_{i}$

Takeaways from Sufficient Primitive Conditions

- The plausibility of the common trends assumption is context-specific
- Before implementing a DiD design, it may be useful to sketch a model of economic choice
 - Agents' information set may be particularly salient
- The model can offer guidance on **restrictions** implied by alternative **selection mechanisms**
- This analysis may help determine if (CT) is or is not compatible with agents' sorting behavior

2 Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

4 Conclusion

Conclusion

- Perhaps unsurprisingly, DiD designs and standard panel data models are linked
- In practice, the common trends assumption restricts sorting and/or time-varying unobservables
- Its context-specific plausibility should be assessed based on economic (vs. statistical) arguments