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Plan

◮ How does the estimator work?
◮ Why is/can it be better than comparable alternatives?
◮ When is it better that comparable alternatives?
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Setting: Definitions

◮ The set of units, indexed by i , get treated in a staggered manner;
◮ The average treatment effect in period t for unit i , that was treated at some t̃ ≤ t:

τit = E [Yit − Yit(0)] (1)

◮ The set of ATTs:
τ = {τit}it∈Ω1 (2)

◮ The target average of ATTs weighted by pre-chosen weights:

τw =


it∈Ω1

witτit ≡ w ′
1τ (3)

Notation summary
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Setting: Assumptions

Assumption 1 (A1). Parallel trends:

E [Yit(0)] = αi + βt , ∀it ∈ Ω (4)

Assumption 2 (A2). No anticipation:

Yit = Yit(0), ∀it ∈ Ω0 (5)
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Assumption 3 (A3). Model for Treatment Effects Structure

Assumption 3 (A3). An optional pre-chosen restriction on treatment effects:

τ = Γθ (6)

Equivalently:

Bτ = θ (7)

NB: Allows for no restrictions (corresponds to Γ = B = I)
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Illustration of causal effects restriction – 1

◮ Consider a simple case: t ∈ {1, 2, 3, 4, 5}, i ∈ {1, 2, 3};
◮ The realized treatment allocation:

Ω1 = {22, 23, 24, 25, 34, 35} (8)

◮ This means:
◮ Unit 1 never got treated;
◮ Unit 2 got treated at t = 2;
◮ Unit 3 got treated at t = 4;

◮ The vector of ATTs:

τ =





τ22
τ23
τ24
τ25
τ34
τ35




(9)
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Illustration of causal effects restriction – 2

◮ Assumption: No heterogeneity in effects across time:

τ22 = τ23 = τ24 = τ25 = θ1, τ34 = τ35 = θ2 (10)

◮ Therefore, only 2 free parameters:
θ =


θ1
θ2


(11)

◮ Mapping back to τ ’s:

τ =





1 0
1 0
1 0
1 0
0 1
0 1





  
Γ

θ (12)
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Illustration of causal effects restriction – 3

◮ Corresponding constraint on τ :




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1





  
B

τ = 0 (13)
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Specification of the empirical model

◮ General model of Y (0):
E [Yit(0)] = A′

itλi + X ′
itδ (14)

◮ Xit – covariates that have common-across-units effects;
◮ Nests time FEs (consider Xit = t);

◮ Ait – covariates that have unit-specific effects;
◮ Nests unit FEs (consider Ai′

it = 1{i = i ′}) and unit-specific trends (consider Ait = t);
◮ NB: Either of these can include time-varying covariates;

◮ Keep in mind the ‘bad control’ risk.
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Estimator Implementation

1. Estimate θ̂ using the following regression:

Yit = A′
itλi + X ′

itδ + Dit(Γ′θ)it + εit (15)

2. Apply the matrix from the treatment effects model (6):

τ̂ = Γθ̂ (16)

3. Apply the pre-chosen weights (3):
τ̂w = w ′

1τ̂ (17)
Notation summary
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Inference

The finite-sample variance of τ̂w is:

σ2
w = E






i




t;it∈Ω
vitεit

2


 (18)

where vit are regression weights for Yit :

τ̂w =


it∈Ω
vitYit (19)

For conservative inference, impose an aggregation structure on treatment effects:

Ω1 = ∪gGg , τit ≡ τg ∀it ∈ Gg (20)
Notation summary
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Conservative estimation of variance

1. Estimate the aggregated effect for each group:

τ̃g =


i


t;it∈Gg

vit

 
t;it∈Gg

vit τ̂it




i


t;it∈Gg

vit

2 (21)

2. Compute residuals using τ̃g (not τ̂it as it leads to a biased estimate of σw ):

ε̃it = Yit − A′
it λ̂i − X ′

it δ̂ − Dit τ̃g(it) (22)

3. Plug into the variance formula (18):

σ̂2
w =



i




t;it∈Ω
vit ε̃it

2

(23)

Notation summary
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Advertised advantages of the estimator

◮ Necessity to explicitly pre-choose the estimand;
◮ Robustness to common identification issues in TWFE regressions:

◮ Spurious identification of long-run effects;
◮ Under-identification of ATTs if a never-treated unit is absent;

◮ Efficiency among linear estimators;
◮ Analytically proven for the homoskedastic case;

◮ Tighter CIs under suitable inference compared to existing robust estimators;
◮ Shown in simulations.
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Summary of simulation results

◮ In many scenarios, the variance is smaller than that of available alternatives;
◮ However, the coverage rate of CIs from the alternatives is mostly as good;
◮ The variance advantage becomes less visible as the number of included lags goes up.

NB: The latest version of the draft (April 2023) does not contain the simulations part.
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Notation

Variable Meaning
τit Average Treatment Effect for unit i at period t
Ω The set of observed it pairs
Ω1 The set of treated it pairs
Ω0 The set of non-treated it pairs
w1 Pre-chosen weights for ATTs
τw The average ATT weighted with w1
θ Free parameters
Γ Matrix that maps free parameters to ATTs
B Matrix that maps ATTs to free parameters
δ Common-across-units effects
λi Unit-specific effects
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