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Introduction

Big Picture

extensions to canonical diff-in-diff model
multiple time periods
variation in treatment timing
treatment effect heterogeneity
“parallel trendsassumption” only conditional on covariates

standpoint
TWFE can be weird/hard to interpret in these cases
What else could/should we done instead?

plan
1 identify disaggregated “group-time ATEs”
2 aggregation of these to causal effects of interest
3 estimation

outcome regression
inverse probabilityweighting
doubly-robust

4 inference
bootstrap
joint inference
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Introduction

Model and Notation

time periods t ∈ {1, . . . , t̄}
binary treatment Di ,t ∈ {0, 1}
all units are untreated at the start, i.e. Di ,1 = 0

treatment is irreversible, i.e. Di ,t+1 ≥ Di ,t for all t = 1, . . . , t̄ − 1

Ci ∈ {0, 1} is 1 iff i is never treated

Gi is the time period in which i is first treated (Gi = ∞ if Ci = 1)

hence the entire treatment path is characterized by Gi

Let Gi ,g ∈ {0, 1} be 1 iff i is first treated in period g

potential outcomes

Yi ,t = Yi ,t(0) +
t̄∑

g=2

(Yi ,t(g)− Yi ,t(0))Gi ,g
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Identification of Disaggregated Effects

Group-Time Average Treatment Effects

First objective is to identify

ATT (g , t) := E[Yi ,t(g)− Yi ,t(0)|Gi ,g = 1]

for all g , t ∈ {2, . . . , t̄}.
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Identification of Disaggregated Effects

Assumptions I

1 treatment

all units start untreated
treatment is irreversible

2 panel random sampling

(Yi,1, . . . ,Yi,t̄ ,Xi ,Di,1, . . . ,Di,t̄) is i.i.d. over i

3 limited treatment anticipation: there is a known δ > 0 such that for
all g < max{G}, t ∈ {1, . . . , t̄} for which t < g − δ

E[Yi ,t(g)|Xi ,Gi ,g = 1] = E[Yi ,t(0)|Xi ,Gi ,g = 1]
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Identification of Disaggregated Effects

Assumptions II

4 conditional parallel trends based on a ‘never-treated’ group
Let δ be the anticipation horizon from assumption 3. For each
g < max{G}, t ∈ {2, . . . , t̄} such that t ≥ g − δ,

E[Yi ,t(0)− Yi ,t−1(0)|Xi ,Gi ,g = 1] = E[Yi ,t(0)− Yi ,t−1(0)|Xi ,Ci = 1].

5 conditional parallel trends based on a ‘not-yet’ group
Let δ be the anticipation horizon from assumption 3. For each
g < max{G}, t ∈ {2, . . . , t̄} and each s, t ∈ (2, . . . , t̄) such that
t ≥ g − δ and t + δ ≤ s < max{G}

E[Yi ,t(0)− Yi ,t−1(0)|Xi ,Gi ,g = 1] =

E[Yi ,t(0)− Yi ,t−1(0)|Xi ,Di ,s = 0,Gi ,g = 0].

6 For each t ≥ 2, g < max{G}, there exists some ε > 0 such that
P[Gg = 1] > ε and

pg ,t(X ) := P[Gg = 1|X ,Gg + (1− Dt)(1− Gg ) = 1] < 1− ε.
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Identification of Disaggregated Effects

Identification Result

Theorem 1

Suppose Assumption 1-4 and 6 hold. Then for all g and t such that
2 + δ ≤ g < max{G} and t ≥ g − δ

ATT (g , t) = E

 Gg

E[Gg ]
−

pg (X )C
1−pg (X )

E
[

pg (X )C
1−pg (X )

]
 (Yt − Yg−δ−1 −mg ,t,δ(X ))

 ,

where

mg ,t,δ(X ) = E [Yt − Yg−δ−1|X ,C = 1] .
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Identification of Disaggregated Effects

Choosing the “Right” Comparison Group

A4 (∃ never-treated gr.) can be replaced w/ A5 (∃ “not-yet” gr.)

equation in the thm changes slightly, see paper

both condition on X , see eg [HIT97] for motivation

If never-treated and not-yet treated gr exist, which one to use?
Callaway & Sant’Anna favor A4 in applications if

never-treated group is large enough
never-treated group is “similar enough” to treated groups

using a not-yet treated units with A5

allows larger comparison groups
restricts pre-(anticipation)treatment trends of “not-yet” treated groups
can be problematic, see eg [MS21]

pretesting to select A4/A5 is problematic, see [Rot19]
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Aggregation to Target Parameters

Target Parameter

Callaway and Sant’Anna consider linear aggregators of the form

θ =
∑
g

t̄∑
t=2

w(g , t)ATT (g , t)

for some “carefully-chosen (known or estimable) weighting functions
specified by the researcher such that θ can be used to address a well-posed
empirical/policy question.”
In particular,

w(g , t) ≥ 0 for all g and t ≥ 2,∑
g

t̄∑
t=2

w(g , t) = 1.
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Aggregation to Target Parameters

Examples

What are “overall” treatment effects?

How does the effect of participating in the treatment vary with length
of exposure to the treatment?

Do groups that are treated earlier have, on average, higher/lower
average treatment effects than groups that are treated later?

What is the cumulative average treatment effect of the policy across
all groups until some particular point in time?

Assume δ = 0.
Then Callaway & Sant’Anna propose to consider

θcumulative =
∑

g<maxG

1t≥gP[G = g |G < t]ATT (g , t).
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Estimation and Inference

Estimation

recall the identification result

ATT (g , t) = E

 Gg

E[Gg ]
−

pg (X )C
1−pg (X )

E
[

pg (X )C
1−pg (X )

]
 (Yt − Yg−δ−1 −mg ,t,δ(X ))

 ,

procedure
1 estimate ATT (g , t)

1 estimate pg (X ) and mg,t,δ(X )
2 use sample analog of E above, plugging in p̂g (X ) and m̂g,t,δ(X )

2 calculate/estimate weights w(g , t)
3 calculate θ

Jonas Lieber Diff-in-Diff with Multiple Time Periods April 26, 2022 11 / 18



Estimation and Inference

Estimation

recall the identification result

ATT (g , t) = E

 Gg

E[Gg ]
−

pg (X )C
1−pg (X )

E
[

pg (X )C
1−pg (X )

]
 (Yt − Yg−δ−1 −mg ,t,δ(X ))

 ,

the identification result in the paper is for three estimators
outcome regression

leaves out blue term
requires correct model for mg,t,δ(X ) (outcome evol of comp group)

inverse probability weighting

leaves out red term
requires correct model for pg (X ) (propensity score)

doubly robust

includes both terms
robust to misspecification of either mg,t,δ(X ) or pg (X )
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Estimation and Inference

Inference: Setting and Assumptions

asymptotic regime

t̄ fixed
n goes to ∞

assumptions
7 parametric model for mg ,t,δ(X ) or pg (X )

sufficiently smooth
∃
√
n strongly consistent estimator for parameters

8 param. model for at least one of mg ,t,δ(X ) or pg (X ) is correct
9 integrability assumptions

allows different estimators ((non-)least squares, mle,...)
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Estimation and Inference

Inference: Theorem

Theorem 2

Suppose Assumption 1-4 and 6-9 hold. Then for all g and t such that
2 + δ ≤ g < maxG and g − δ ≤ t ≤ t̄ − δ

√
n
(

ˆATT t≥g−δ − ATTt≥g−δ

)
=

1√
n

n∑
i=1

Ψi + op(1)

where an analytic expression for Ψi is provided in the paper. Furthermore

√
n
(

ˆATT t≥g−δ − ATTt≥g−δ

)
d−→ N (0,Σ)

where an analytic expression for Σ is provided in the paper.
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Estimation and Inference

Inference: Implementation

could use analytic expression to estimate variance, Slutsky etc

Callaway & Sant’Anna prefer the multiplier bootstrap

does not require re-estimation of propensity score in each bootstrap
iteration
simplifies simultaneous inference
for each bootstrap iteration s = 1, . . . ,S

1 draw a sample of N iid random variables with zero mean, unit variance,
and finite third moment, independent of the original data, eg

V =

{
1− κ w.p. κ√

5
,

κ w.p. 1− κ√
5

for κ = (
√
5 + 1)/2.

2 ˆATT
s
(t, g) = ˆATT + V Ψ̂.

this yields valid point-wise inference
see paper for formulas for simultaneous adjustments
can draw cluster-specific V ’s for cluster inference (if clusters are large)
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Estimation and Inference

Lemma for Proof of Theorem 1

E[Yt(g)− Yt(0)|X ,Gg = 1]

=E[Yt(g)− Yg−δ−1(0)|X ,Gg = 1]− E[Yt(0)− Yg−δ−1(0)|X ,Gg = 1]

=E[Yt(g)− Yg−δ−1(0)|X ,Gg = 1]−
t−g−δ∑
l=0

E[Yt−l(0)− Yt−l−l(0)|X ,Gg = 1]

4
=E[Yt(g)− Yg−δ−1(0)|X ,Gg = 1]−

t−g−δ∑
l=0

E[Yt−l(0)− Yt−l−l(0)|X ,C = 1]

=E[Yt(g)− Yg−δ−1(0)|X ,Gg = 1]− E[Yt(0)− Yg−δ−1(0)|X ,C = 1]

3
=E[Yt − Yg−δ−1|X ,Gg = 1]− E[Yt − Yg−δ−1|X ,C = 1].

Note that assumption 1 is used whenever we write the potential outcomes
as function of g .
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Estimation and Inference

Proof of Theorem 1 for the Outcome Regression

ATT (g , t)

=E[E[Yt(g)− Yt(0)|X ,Gg = 1]|Gg = 1]

=E[E[Yt − Yg−δ−1|X ,Gg = 1]− E[Yt − Yg−δ−1|X ,C = 1]|Gg = 1]

=E[Yt − Yg−δ−1|Gg = 1]− E[E[Yt − Yg−δ−1|X ,C = 1]︸ ︷︷ ︸
=:mg,t,δ(X )

|Gg = 1]

=E[Yt − Yg−δ−1 −mg ,t,δ(X )|Gg = 1]

=E
[

Gg

P[Gg = 1]
(Yt − Yg−δ−1 −mg ,t,δ(X ))

]
=E

[
Gg

E[Gg ]
(Yt − Yg−δ−1 −mg ,t,δ(X ))

]
.
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Estimation and Inference
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