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Definitions

Definitions

• Time periods indexed by t ∈ {1, . . . , t}

• Dt ∈ {0, 1} indicates treatment assignment at the beginning of period t

• The treatment is absorbing, i.e., Dt = 1 =⇒ Dτ = 1 for all τ ∈ {t + 1, . . . , t}

• Yt ∈ R denotes an outcome observed at the end of period t
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Definitions

Definitions

1 Difference-in-Differences (DiD)

• There exists one and only one time period t∗ at which one can receive the treatment

• If a unit is untreated at t = t∗, it will never be treated

• Example: policies that are implemented all at once

2 Event Study (ES)

• Staggered assignment of the treatment

• Cohorts are implied by the timing of treatment assignment (including never- and always-treated)

• Example: policies that are implemented at different times for different groups
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The Canonical Two-Period Difference-in-Differences Design

The Canonical Two-Period Difference-in-Differences Design

• Two time periods indexed by t ∈ {1, 2}

• The treatment is assigned in t = 2, i.e., P (D1 = 0) = 1 and 0 < P (D2 = 1) < 1
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The Canonical Two-Period Difference-in-Differences Design

The Canonical Two-Period Difference-in-Differences Design

• Potential treatments D1 = 0 (degenerate) and D2 (0) (nondegenerate)

• It is common to define a control group (G = 0) and a treatment group (G = 1)

G = 0 ⇐⇒ (D1,D2 (0)) = (0, 0)

G = 1 ⇐⇒ (D1,D2 (0)) = (0, 1)

• Thus, the treatment can be defined as Dt ≡ G × I [t = 2]

• Potential outcomes Yt (0,D2 (0)) for t ∈ {1, 2}
• Y1 (0, 0), Y1 (0, 1), Y2 (0, 0), Y2 (0, 1) depend on the full path of treatment states
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The Canonical Two-Period Difference-in-Differences Design

The Canonical Two-Period Difference-in-Differences Design

• Target parameter: ATT2 ≡ E [Y2 (0, 1)− Y2 (0, 0) |D1 = 0,D2(0) = 1]

• The first conditional mean is observed:

E [Y2 (0, 1) |D1 = 0,D2(0) = 1] = E [Y2|D1 = 0,D2 = 1]

• To identify the second conditional mean, assume common trends:

E [Y2 (0, 0)− Y1 (0, 0) |D1 = 0,D2(0) = 0] = E [Y2 (0, 0)− Y1 (0, 0) |D1 = 0,D2(0) = 1]

• Equivalently,

E [Y2 (0, 0)− Y1 (0, 0) |G = 0] = E [Y2 (0, 0)− Y1 (0, 0) |G = 1]
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The Canonical Two-Period Difference-in-Differences Design

The Canonical Two-Period Difference-in-Differences Design

• The left-hand side is observed, so

E [Y2 (0, 0) |D1 = 0,D2(0) = 1] = E [Y2 − Y1|D1 = 0,D2 = 0] + E [Y1 (0, 0) |D1 = 0,D2(0) = 1]

• To identify E [Y1 (0, 0) |D1 = 0,D2(0) = 1], assume no anticipation:

E [Y1 (0, 0)|D1 = 0,D2(0) = 1] = E [Y1 (0, 1)|D1 = 0,D2(0) = 1]

• The right-hand side is observed, so the target parameter is identified by the DiD estimand

ATT2 = E [Y2 − Y1|D1 = 0,D2 = 1]− E [Y2 − Y1|D1 = 0,D2 = 0]
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The Canonical Two-Period Difference-in-Differences Design

Observed Conditional Means
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The Canonical Two-Period Difference-in-Differences Design

Identified Conditional Means
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The Canonical Two-Period Difference-in-Differences Design

Imposing No Anticipation
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The Canonical Two-Period Difference-in-Differences Design

Imposing Common Trends
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The Canonical Two-Period Difference-in-Differences Design

Implementation with Linear Regression

• The difference-in-differences estimand

DiD = E [Y2 − Y1|D1 = 0,D2 = 1]− E [Y2 − Y1|D1 = 0,D2 = 0]

• Linear combination of four conditional means

• Could be estimated nonparametrically (binning), but linear regression is more convenient

• A saturated regression that exactly replicates realizations of E [Yt |D1 = 0,D2] for t ∈ {1, 2}
• Four bins and four regressors → no need to approximate the conditional means of Y
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The Canonical Two-Period Difference-in-Differences Design

Implementation with Linear Regression

• One possible specification is

E [Y |D1,D2,T ] = α1 × I [D1 = 0,D2 = 0,T = 1] + α2 × I [D1 = 0,D2 = 0,T = 2]

+ α3 × I [D1 = 0,D2 = 1,T = 1] + α4 × I [D1 = 0,D2 = 1,T = 2]

The target parameter (ATT2) is identified by (α4 −α3)− (α2 −α1)

• For a more convenient interpretation,

E [Y |D1,D2,T ] = β1 × 1 + β2 × I [D1 = 0,D2 = 1]︸ ︷︷ ︸
treated group

+ β3 × I [T = 2]︸ ︷︷ ︸
post period

+β4 × I [D1 = 0,D2 = 1,T = 2]︸ ︷︷ ︸
treated group & post period

The target parameter (ATT2) is identified by β4 = (α4 − α3)− (α2 − α1)
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Extension to Covariates

Extension to Covariates

• The common trends assumption may be more plausible within bins implied by covariates

• Ideally predetermined because time-varying covariates may be caused by the treatment

• Let X ∈ Rdx be a vector of predetermined (time-invariant) covariates

• Conditional common trends. With probability one,

E [Y2 (0, 0)− Y1 (0, 0) |D1 = 0,D2(0) = 0,X ] = E [Y2 (0, 0)− Y1 (0, 0) |D1 = 0,D2(0) = 1,X ]

• Assume an overlap condition

0 < P (D1 = 0,D2 (0) = 1|X = x) < 1 for all x ∈ supp (X )

Intuition: for each possible realization of X , both control and treatment groups are “populated”
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Extension to Covariates

Extension to Covariates

• The conditional target parameter ATT2 (x) is identified by

ATT2 (x) = E [Y2 − Y1|D1 = 0,D2 = 1,X = x ]− E [Y2 − Y1|D1 = 0,D2 = 0,X = x ]

• By the Law of Iterated Expectations, the unconditional target parameter is

ATT2 = E [ATT2 (X ) |D1 = 0,D2 = 1]

= E [Y2 − Y1|D1 = 0,D2 = 1]︸ ︷︷ ︸
easy

−E [E [Y2 − Y1|D1 = 0,D2 = 0,X ] |D1 = 0,D2 = 1]︸ ︷︷ ︸
not so easy

• In finite samples, it may not be easy to compute the second term if X has large support

• Curse of dimensionality, the estimator will likely have high variance
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Extension to Covariates

Extension to Covariates

Some possible solutions:

1 The good old linear regression. A commonly adopted specification is

E [Y |D1,D2,T ,X ] ≈ γ1 × 1 + γ2 × I [D1 = 0,D2 = 1] + γ3 × I [T = 2]

+ γ4 × I [D1 = 0,D2 = 1,T = 2] + X ′δ

This linear regression is no longer saturated (optimal MSE is positive, not zero)!

• If treatment effect Y2 (0, 1) − Y2 (0, 0) is a deterministic constant, no problem

• However, Y2 (0, 1) − Y2 (0, 0) is very likely to be a nondegenerate random variable

• Coefficients in unsaturated regressions are often hard to interpret in this case...

• ...even in extremely simple specifications. Consider, for instance, S loczyński (2020)
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Extension to Covariates

Extension to Covariates

2 Matching on X (if discrete and with small support)

3 Matching on the propensity score p (X ) ≡ P (D1 = 0,D2 = 1|X )

• The propensity score is often estimated with a logistic regression

4 Propensity score weighting. Given G = 1 ⇐⇒ D1 = 0,D2 = 1, the target parameter is

ATT2 =
1

P (G = 1)
E
[(

G − (1− G ) p (X )

1− p (X )

)
(Y2 − Y1)

]
In practice, replace population moments with their sample counterparts (plug-in method)
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• The (absorbing) treatment is assigned in period t∗ ∈ {1, . . . , t}

• Thus, the treatment can be defined as Dt ≡ G × I [t ≥ t∗]

• Given multiple time periods, easier to index potential treatments and outcomes by G ∈ {0, 1}

• For any t, potential treatments Dt (G ) and potential outcomes Yt (G )

• Because this a sharp design, Dt (G ) is a deterministic function of G

• E.g. for any t ≥ t∗, Dt (0) = 0 and Dt (1) = 1 with probability one
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• Multiple target parameters: for any t ≥ t∗,

ATTt ≡ E [Yt (1)− Yt (0) |G = 1]

where Yt (g) indicates the period-t potential outcome in group G = g

• A generalized common trends assumption. For any s < t∗ and t ≥ t∗,

E [Yt (0)− Ys (0) |G = 0] = E [Yt (0)− Ys (0) |G = 1]

• A generalized no anticipation assumption

• In words: on average, today’s potential outcome is not affected by future treatment states
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• The identification argument is analogous to the two-period case. For any s < t∗ and t ≥ t∗,

ATTt = E [Yt − Ys |G = 1]− E [Yt − Ys |G = 0]

• Implementation with linear regression is more convenient in this case

• By the common trends assumption, for g ∈ {0, 1} and any t ∈ {1, . . . , t},

E [Y (0)|G = g ,T = t] = E [Y (0)|G = g ,T = 1] + E [Y (0)|T = t]− E [Y (0)|T = 1]︸ ︷︷ ︸
pure time indicators

• In addition, E [Y (0)|G ,T = 1] has two possible realizations, so it can be expressed as

E [Y (0)|G ,T = 1] = α+ βG

Francesco Ruggieri An Introduction to DiD and ES April 4, 2022 19



Extension to Multiple Time Periods

Extension to Multiple Time Periods

• A hypothetical (intermediate) regression

E [Y (0)|G ,T ] ≈ α+ βG +
t∑

s=2

γsI [T = s]

E [Y (0)|G ,T ] has 2t possible realizations, some regressors are missing to saturate it

• The treatment is a deterministic function of G and T . By the switching equation,

E [Y |G ,T ] = E [Y (0) + D (Y (1)− Y (0)) |G ,T ]

= E [Y (0)|G ,T ]︸ ︷︷ ︸
above

+E [D (Y (1)− Y (0)) |G ,T ]︸ ︷︷ ︸
P(D=1|G=1,T=t)=1 for t≥t∗

= E [Y (0)|G ,T ] +
t∑

s=t∗

E [Y (1)− Y (0)|G = 1,T = s]︸ ︷︷ ︸
≡ATTs

I [G = 1,T = s]
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• A Two-Way Fixed Effects (TWFE) regression

E [Y |G ,T ] ≈ α+ βG +
t∑

s=2

γsI [T = s] +
t∑

s=t∗

δsI [G = 1,T = s]

This specification is not saturated because common trends has been assumed to be true

• To determine if common trends is plausible, saturate it:

E [Y |G ,T ] = α+ βG +
t∑

s=2

γsI [T = s] +
t∗−1∑
s=2

ηsI [G = 1,T = s] +
t∑

s=t∗

δsI [G = 1,T = s]

Now 2t realizations of E [Y |G ,T ] and 2t regressors

• δs identifies ATTs , while ηs will be equal to zero if common trends holds
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• This is often referred to as dynamic TWFE specification

• An alternative is to consider the (unsaturated) static TWFE specification

E [Y |G ,T ] = α+ βG +
t∑

s=2

γsI [T = s] +
t∗−1∑
s=2

ηsI [G = 1,T = s] + δI [G = 1,T ≥ t∗]

• δ identifies 1
t−t∗

∑t
s=t∗ ATTs , a simple average of ATTs in the post-period

• Intuitively, fewer parameters to be estimated, so likely lower variance
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Extension to Multiple Time Periods

Extension to Multiple Time Periods

• If the dynamic TWFE specification is not saturated, {ηs}t
∗−1
s=2 reflect leads and lags

• Linear regression approximates – does not exactly replicate – the conditional outcome mean

• It may be inappropriate to test {ηs}t
∗−1
s=2 to assess the plausibility of common trends

• This is the case even if common trends is in fact true

• The issue disappears if the dynamic TWFE specification is saturated...

• ...or if average effects are homogeneous over time (ATTt = ATT for all t)
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Event Studies

Event Studies

• Staggered assignment of the treatment

• Cohorts are implied by the timing of treatment assignment (including never- and always-treated)

• TWFE specifications are extremely problematic...

• ...see you next Monday with Goodman-Bacon (2021)!
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