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Difference-in-Differences with Two Time Periods

Setup

• i and t ∈ {1, 2} indicate units and time periods, respectively

• Yit ∈ R is a scalar outcome of interest

• Gi ∈ {0, 1} is a time-invariant binary treatment group

• Dit ≡ Gi I [t = 2] is a binary treatment available to units in Gi = 1 in period t = 2

• Dit and Yit are linked by potential outcomes Yit(0),Yit(1)

Francesco Ruggieri Difference-in-Differences December 2, 2020 2



Difference-in-Differences with Two Time Periods

Identification

• Assume common trends in untreated potential outcomes across treatment groups:

E [Yi2(0)− Yi1(0)|Gi = 0] = E [Yi2(0)− Yi1(0)|Gi = 1]

• The average change in untreated potential outcomes is group-invariant

• Thus, the average untreated potential outcome among treated units in t = 2 is

E [Yi2(0)|Gi = 1] = E [Yi1(0)|Gi = 1] + E [Yi2(0)− Yi1(0)|Gi = 0]

= E [Yi1|Gi = 1] + E [Yi2 − Yi1|Gi = 0]

where the second equality follows from the fact that all units are untreated in t = 1
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Difference-in-Differences with Two Time Periods

Identification

• The Average Treatment Effect on the Treated (ATT) can be identified as

ATT ≡ E [Yi2(1)− Yi2(0)|Gi = 1]

= E [Yi2(1)|Gi = 1]− E [Yi2(0)|Gi = 1] (linearity of E [·])
= E [Yi2|Gi = 1]− E [Yi2(0)|Gi = 1] (Dit ≡ Gi I [t = 2])

= E [Yi2|Gi = 1]− (E [Yi1|Gi = 1] + E [Yi2 − Yi1|Gi = 0]) (common trends)

= E [Yi2 − Yi1|Gi = 1]− E [Yi2 − Yi1|Gi = 0]

• The Average Treatment Effect on the Untreated (ATU) cannot be identified because

ATU ≡ E [Yi2(1)− Yi2(0)|Gi = 0]

= E [Yi2(1)|Gi = 0]− E [Yi2(0)|Gi = 0] (linearity of E [·])
= E [Yi2(1)|Gi = 0]− E [Yi2|Gi = 0] (Dit ≡ Gi I [t = 2])

and treated potential outcomes are never observed among untreated units
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Difference-in-Differences with Two Time Periods Example: Participation to a Program (Wing and Cook 2013)

Setup

• As above, i and t ∈ {1, 2} indicate units and time periods, respectively

• Xi ∈ X ⊆ R is a time-invariant, predetermined and observable random variable

• Dit ∈ {0, 1} denotes participation to a program that is only available in period t = 2

• As in the standard case, Di1 = 0 for all i

• Program participation in period t = 2 is determined as Di2 ≡ I [Xi ≥ x ], with x known

• E.g. a program that applies retroactively to individuals above an age cutoff at a given date

• Yit ∈ R is a scalar outcome of interest
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Difference-in-Differences with Two Time Periods Example: Participation to a Program (Wing and Cook 2013)

Identification

• Dit and Yit are linked by potential outcomes Yit(0),Yit(1)

• E [Yit(d)|Xi = x ] is continuous for all x ∈ X and d = 0, 1

• Assume that the average change in untreated potential outcomes is constant:

E [Yi2(0)− Yi1(0)|Xi = x ] = α ∈ R ∀ x ∈ X

• Goal: determine the largest set of X for which one can point identify

E [Yi2(1)− Yi2(0)|Xi = x ]

i.e., the (conditional) average treatment effect
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Difference-in-Differences with Two Time Periods Example: Participation to a Program (Wing and Cook 2013)

Identification

• Consider any x < x . Then Di1 = 0 and

α = E [Yi2(0)− Yi1(0)|Xi = x ] = E [Yi2 − Yi1|Xi = x ] ∀x < x

which implies that α is point identified

• Consider any x ≥ x . Then Di2 = 1 and

E [Yi2(1)|Xi = x ] = E [Yi2|Xi = x ] ∀x ≥ x

• In addition, for any x ≥ x ,

E [Yi2(0)|Xi = x ] = E [Yi2(0)|Xi = x ] + E [Yi1(0)− Yi1(0)|Xi = x ]

= E [Yi2(0)− Yi1(0)|Xi = x ] + E [Yi1(0)|Xi = x ]

= α+ E [Yi1(0)|Xi = x ] (α point identified)

= α+ E [Yi1|Xi = x ] (Di1 = 0 ∀i)
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Difference-in-Differences with Two Time Periods Example: Participation to a Program (Wing and Cook 2013)

Identification

• The target parameter can be point identified for any x ≥ x :

E [Yi2(1)− Yi2(0)|Xi = x ] = E [Yi2(1)|Xi = x ]− E [Yi2(0)|Xi = x ] (linearity of E [·])
= E [Yi2|Xi = x ]− (α+ E [Yi1|Xi = x ])

= E [Yi2 − Yi1|Xi = x ]− α (linearity of E [·])

• The target parameter cannot be point identified for x < x because

E [Yi2(1)− Yi2(0)|Xi = x ] = E [Yi2(1)|Xi = x ]− E [Yi2(0)|Xi = x ] (linearity of E [·])
= E [Yi2(1)|Xi = x ]− E [Yi2|Xi = x ] (Di2 = 0 for x < x)

and treated potential outcomes are never observed among untreated units
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Difference-in-Differences with Multiple Time Periods

Setup

• i and t ∈ {1, . . . , t0, t∗, . . . , t} indicate units and time periods, respectively

• Yit ∈ R is a scalar outcome of interest

• Gi ∈ {0, 1} is a time-invariant binary treatment group

• Dit ≡ Gi I [t ≥ t∗] is a binary treatment available to units in Gi = 1 in periods t ≥ t∗

• {1, . . . , t0} is the set of pre-periods and {t∗, . . . , t} is the set of post-periods

• Dit and Yit are linked by potential outcomes Yit(0),Yit(1)
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Difference-in-Differences with Multiple Time Periods

Identification

• Assume common trends in untreated potential outcomes across treatment groups:

E [Yis(0)− Yir (0)|Gi = 0] = E [Yis(0)− Yir (0)|Gi = 1]

for any r ∈ {1, . . . , t0} and any s ∈ {t∗, . . . , t}

• All average changes in untreated potential outcomes are group-invariant

• Thus, the average untreated potential outcome among treated units in t = s is

E [Yis(0)|Gi = 1] = E [Yir (0)|Gi = 1] + E [Yis(0)− Yir (0)|Gi = 0]

= E [Yir |Gi = 1] + E [Yis − Yir |Gi = 0]

where the second equality follows from the fact that all units are untreated in t = r
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Difference-in-Differences with Multiple Time Periods

Identification

• Period-specific ATTs can be identified as

ATTs ≡ E [Yis(1)− Yis(0)|Gi = 1]

= E [Yis(1)|Gi = 1]− E [Yis(0)|Gi = 1] (linearity of E [·])
= E [Yis |Gi = 1]− E [Yis(0)|Gi = 1] (Dit ≡ Gi I [t ≥ t∗])

= E [Yis |Gi = 1]− (E [Yir |Gi = 1] + E [Yis − Yir |Gi = 0]) (common trends)

= E [Yis − Yir |Gi = 1]− E [Yis − Yir |Gi = 0]

• Period-specific ATUs cannot be identified because

ATUs ≡ E [Yis(1)− Yis(0)|Gi = 0]

= E [Yis(1)|Gi = 0]− E [Yis(0)|Gi = 0] (linearity of E [·])
= E [Yis(1)|Gi = 0]− E [Yis |Gi = 0] (Dit ≡ Gi I [t ≥ t∗])

and treated potential outcomes are never observed among untreated units
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Difference-in-Differences with Multiple Time Periods

Linear Regression Implementation

Period-specific ATTs can be equivalently computed with linear regression:

• Common trends implies additive separability of unit and time effects in E [Yit(0)|Gi ]:

E [Yit(0)|Gi = g ] = I [Gi = g ] + βt = αi + βt for g = 0, 1

• Under common trends, the conditional mean of the observed outcome is

E [Yit |Gi = g ] = αi + βt +
∑
j≥t∗

I [Gi = 1, t = j ]ATTj

• This is the linear regression implementation of a difference-in-differences design

• Not fully saturated, but {ATTj}j≥t∗ are exactly (not approximately) point identified
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Difference-in-Differences with Multiple Time Periods

Linear Regression Implementation

Let us compare three common regression specifications:

1 Two-way fixed effects regression with post-period interactions

Yit = αi + βt +
∑
j≥t∗

γjGi I [t = j ] + Uit

2 Two-way fixed effects regression with a single post-period interaction

Yit = αi + βt + γGi I [t ≥ t∗] + Uit

3 Two-way fixed effects regression with some pre- and post-period interactions

Yit = αi + βt +
∑
j∈J

γjGi I [t = j ] + Uit where J =
{
t∗ − l , . . . , t∗, . . . , t∗ +m

}

Francesco Ruggieri Difference-in-Differences December 2, 2020 13
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Difference-in-Differences with Multiple Time Periods Monte Carlo Simulation: Linear Regression Implementation

Data Generating Process

Yit(0) = Ai + Bt + Uit

Yit(1)− Yit(0) = sin(t) (Ai + 0.3Gi ) + Vit

• Time periods indexed by t ∈ {1, . . . , 10}

• P (Gi = 1) = 0.3

• Ai |Gi = g ∼ N
(
−0.2 + 0.5g , (1 + 0.3g)2

)
• Bt ∼ N (0, 0.09), and independent of all other variables

• Uit ∼ N (0, 1), and independent of all other variables

• Vit ∼ N (0, 0.04), and independent of all other variables

• The binary treatment is defined as Dit ≡ Gi I [t ≥ 6]
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Difference-in-Differences with Multiple Time Periods Monte Carlo Simulation: Linear Regression Implementation

Common Trends

Common trends holds because

E [Yit(0)− Yi1(0)|Gi = g ] = Bt − B1 + E [Ui |Gi = g ] = Bt − B1 for g = 0, 1
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Difference-in-Differences with Multiple Time Periods Monte Carlo Simulation: Linear Regression Implementation

Monte Carlo Simulation

• Perform a Monte Carlo simulation to compare difference-in-differences specifications

• Period-specific ATTs can be estimated as {γj}10j=6 in

Yit = αi + βt +
10∑
j=6

γjGi I [t = j ] + Rit

Parameter Mean Estimate

γ6 -0.166
γ7 0.394
γ8 0.596
γ9 0.249
γ10 -0.327

Notes: This table reports mean OLS estimates of
{
γj
}10

j=6
across 1000 Monte Carlo simulations.
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Difference-in-Differences with Multiple Time Periods Monte Carlo Simulation: Linear Regression Implementation

Monte Carlo Simulation

• The TWFE regression with one post-period interaction identifies γ̂ = 1
5

∑10
j=6 ÂTTj = 0.148

• Consider the two-way fixed effects specification with some pre- and post-period interactions:

Yit = αi + βt +
7∑

j=4

γjGi I [t = j ] + Rit

Parameter Mean Estimate

γ4 -0.085
γ5 -0.086
γ6 -0.252
γ7 0.308

Notes: This table reports mean OLS estimates of
{
γj
}7

j=4
across 1000 Monte Carlo simulations.

• In this case, mean estimates are significantly different from the estimated ATTs
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Changes-in-Changes (Athey and Imbens 2006)

Motivation

• Difference-in-differences is subject to a nonlinearity critique

• E.g. if common trends holds for Y , common trends cannot hold for log (Y ), and viceversa

• There may be valid economic reasons why this critique is not particularly salient

• Changes-in-changes (CiC) is immune to this nonlinearity critique

• In a standard difference-in-differences design, common trends implies that

E [Yis(0)|Gi = 1] = E [Yir |Gi = 1] + E [Yis − Yir |Gi = 0]

for any r ∈ {1, . . . , t0} and any s ∈ {t∗, . . . , t}

• CiC argument: identify the marginal distributions of Y (0) among treated units in
post-periods by assuming rank invariance of the marginal distributions of Y (0) over time
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Changes-in-Changes (Athey and Imbens 2006)

Setup

For simplicity, consider the following framework:

• i and t ∈ {1, 2} indicate units and time periods, respectively

• Yit ∈ R is a scalar and continuously distributed outcome of interest

• Gi ∈ {0, 1} is a time-invariant binary treatment group

• Dit ≡ Gi I [t = 2] is a binary treatment available to units in Gi = 1 in period t = 2

• Dit and Yit are linked by potential outcomes Yit(0),Yit(1)

• Ui ∈ R is a time-invariant scalar latent variable
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Changes-in-Changes (Athey and Imbens 2006)

Identification

• The difference-in-differences model assumes the additive single index structure

Yit(0) = ht (Ui ) = ϕ (Ui + δt) = Ui + δt

where ϕ(·) is the identity function

• The changes-in-changes model assumes the additive single index structure

Yit(0) = ht (Ui ) = ϕ (Ui + δt)

where ϕ(·) is a generic strictly increasing function

• The ht functions are unknown and strictly increasing

• Further assume the marginal distributions of Y (0) are rank invariant over time:

FY1(0) (Yi1(0)) = FY2(0) (Yi2(0)) = Ui
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Changes-in-Changes (Athey and Imbens 2006)

Identification

• The marginal distribution of the untreated potential outcome in the pre-period is

FY1(0)|G (y |g) ≡ P (Yi1(0) ≤ y |Gi = g)

= P (h1(Ui ) ≤ y |Gi = g) (Yi1(0) = h1 (Ui ))

= P
(
Ui ≤ h−1

1 (y)|Gi = g
)

(h1 strictly increasing)

= P
(
h2(Ui ) ≤ h2

(
h−1
1 (y)

)
|Gi = g

)
(h2 strictly increasing)

= P
(
Yi2(0) ≤ h2

(
h−1
1 (y)

)
|Gi = g

)
(Yi2(0) = h2 (Ui ))

≡ FY2(0)|G
(
h2

(
h−1
1 (y)

)
|g
)

• Because Di1 = 0 for all i , h2
(
h−1
1 (y)

)
can be point identified as

ϕ (y) ≡ h2
(
h−1
1 (y)

)
= F−1

Y2(0)|G
(
FY1(0)|G (y |0) |0

)
= F−1

Y2|G
(
FY1|G (y |0)

∣∣0)
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Changes-in-Changes (Athey and Imbens 2006)

Identification

• Thus, the marginal distribution of Y (0) among treated units in the post-period is

FY2(0)|G (ϕ (y) |1) = FY1(0)|G (y |1) = FY1|G (y |1)

or, equivalently,

FY2(0)|G (y |1) = FY1(0)|G
(
ϕ−1 (y)

∣∣1) = FY1|G
(
ϕ−1 (y)

∣∣1)
• As usual, the marginal distribution of Y (1) among treated units in the post-period is

FY2(1)|G (y |1) ≡ P (Yi2(1) ≤ y |Gi = 1) = P (Yi2 ≤ y |Gi = 1) ≡ FY2|G (y |1)

where point identification follows from the fact that Dit ≡ Gi I [t = 2]
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Changes-in-Changes (Athey and Imbens 2006)

Identification

• Any target parameter that is a function of FY2(0)|G (y |1) and FY2(1)|G (y |1) is identified

• For instance, the Average Treatment Effect on the Treated can be point identified as

ATT ≡ E [Yi2(1)− Yi2(0)|Gi = 1]

= E [Yi2(1)|Gi = 1]− E [Yi2(0)|Gi = 1] (linearity of E [·])
= E [Yi2|Gi = 1]− E [Yi2(0)|Gi = 1] (Dit ≡ Gi I [t = 2])

= E [Yi2|Gi = 1]− EFY1|G

[
ϕ−1 (Yi1) |Gi = 1

]
where the last equality uses the point identified distribution of Y2(0)|G = 1
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Summary

Summary

• Difference-in-differences with two time periods identifies the ATT, not the ATU/ATE

• Difference-in-differences with multiple time periods identifies period-specific ATTs

• The changes-in-changes model does not hinge on common trends but assumes rank invariance
of the distributions of untreated potential outcomes over time
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