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Framework for Sharp Regression Discontinuity Designs

® Y € R is a scalar outcome of interest, D € {0,1} is a binary treatment

D and Y are linked by potential outcomes Y(0), Y(1)

® R € R is a running variable, not necessarily continuously distributed everywhere

The dependency of D and R with Y(0), Y(1) is not restricted

® There exists a cutoff ¢ € R such that D =1[R > c]

® The treatment is a deterministic function of the running variable
e E[Y(d)|R = r] is continuous at r = ¢ for d = 0,1
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Framework for Sharp Regression Discontinuity Designs

® Since D=1ifandonlyif R>cand D=0ifand only if R < c:

E[YIR=r]=E[YIR=r,D=1]=E[Y(1)|[R=7r] foreveryr>c
E[YIR=r]=E[YIR=r,D=0]=E[Y(0)[R=7r] foreveryr<c

® Taking limits for r { c and r 1 c:
IiinE[Y|R =r|= Iiin]E[Y(1)|R =r]=E[Y(])|R = (]
IiTmE[Y|R =r]= IipE[Y(O)|R =r]=E[Y(0)|R = (]

where the last equality follows in both cases from continuity of E[Y(d)|R=r]at r=c¢

® These limits can be differenced out to point identify

ATE(c) =E[Y(1) - Y(O)IR = ] = ImE[Y|R = r] - imE[Y|R = 1]
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Sharp Regression Discontinuity Designs: Extensions

@ Multiple Cutoffs: the cutoff is a discrete random variable, C, rather than a constant, ¢

® Example: plurality voting in elections with more than two competing candidates

® Example: state or local governments setting eligibility cutoffs for a federal program

® Multiple Running Variables: R € R?, with d, > 1, as opposed to R € R

® Example: a scholarship awarded to students who score above two subject-specific thresholds

® Example: counties that require voting by mail vs. counties that allow in-person voting
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Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

® Y € R is a scalar outcome of interest, D € {0,1} is a binary treatment

C is a cutoff random variable with support C = {cl, N cj}

® The probability of each cutoff realization is p. =P (C = ¢) € [0, 1]

® R € R is a continuously distributed running variable with density fz(r)

® fgic (r|c;) denotes the density of R conditional on C = ¢ for j=1,...,j

In this setting, different agents may face different cutoffs
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Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

® For simplicity, focus on the sharp design, so D =I[R > (]

® D and Y are linked by potential outcomes Y (0), Y (1), which are also functions of C:

Y(0,C),Y(1,C) st. Y= i]I[C = ¢] x [DY(1,¢) + (1 - D)Y(0, )]

Jj=1

Y (d, ¢j) highlights that potential outcomes may be affected by the realization of C

® Further assumptions:

® E[Y(d,c)|[R=r,C =c]is continuous in r at r = ¢ for every c€ C and d = 0,1

@® The densities fg|c(r|c) are positive and continuous in r at r = ¢ for every c € C
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Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)
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Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

Rather than estimating cutoff-specific effects, one may choose to normalize and pool:

@ Normalize: define the normalized running variable R=R-C

® |n words, center each agent’s running variable around their cutoff realization

® Pool: identify a target parameter using standard regression discontinuity arguments

® This approach ignores the heterogeneity in the distributions of Y(0) and Y'(1) in terms of C

® The point-identified target parameter is a pooled estimand:
J
=3 E[Y(L,q) - Y(0,g)R=¢, C = q] xw(q)
j=1

where
fR\C (C|C) X IED(C = C)

>vee fric(c|e) x P(C =¢)
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Sharp Regression Discontinuity Designs: Extensions VIS ReNeid

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

©® Constant treatment effects: if Y(1,¢;)
P _ j
r

—Y(0,¢)=7(g) forj=1,....J,
_17(¢) x w(cj) is a weighted average of cutoff-specific constants

® Ignorable R: if E[Y(L.¢) - Y(0.)|R = . C = g] = E[Y(L,g) — Y(0,6)|C = g,

Y (o,
EZ [Y(1,¢) = Y(0,6)IC = ¢] x w(q))

so 7F

may be estimated with global polynomial techniques

® lIgnorable C: if E[Y(1,¢) — Y(0,¢)|R=¢;,C=¢]=E[Y(1,¢)— Y(0,¢)|R = g,

]
EZ Y(1,6) - Y(0,¢)R=g]xP(C=g)
=1
P-

so 7" is a weighted average of “local” (in terms of R) average treatment effects
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Keele and Titiunik (2015)

® Y € R is a scalar outcome of interest, D € {0,1} is a binary treatment

D and Y are linked by potential outcomes Y(0), Y(1)

® Treatment assignment changes discontinuously at a border 53

® 1 is geographic boundary that separates a treated area (B;) from a control area (B.)

R € R? is a pair of running variables usually denoting latitude and longitude

® For simplicity, focus on the sharp design, so
D :H[Rl > b]_] X H[Rz > b2]
where (b1, by) € B is a boundary point
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Keele and Titiunik (2015)

® As in the scalar case, average potential outcomes are continuous at the border:
E[Y(d)|(R1, R2) = (r1,r2)] is continuous in ri,m at n = by, n= by

for every (b1, by) € Band d =0,1

® et R= (Rl, Rg), r—= (r17r2), and b = (bl,bz). Then

im E[YIR=r]= lm E[Y1)R=r]=E[Y(1)R=b]

r—b;reB;
Llim E[YR=r=_lm E[Y(O)R=r]=E[Y(0)R=b]

where the last equality follows in both cases from continuity of E[Y(d)|[R=r] atr=Db
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Keele and Titiunik (2015)

® As in the scalar case, these limits can be differenced out to identify

E[Y(1) - Y(0)R=Db] = r_)Ib|;rrn€BtIE[Y\R =r]— r_}Ibl;r:weBC]E [YIR=1]
where E[Y(1) — Y(0)|R = b] is the ATE of D on Y at the border point b € B

® |n practice, one may construct a scalar running variable as the Euclidean distance

D(b1, b2) = \/ (Rt — b1)* + (R — by’
which reduces the design to a standard unidimensional regression discontinuity:

E[Y(1) - Y(0)|D(b) = 0] = imE[Y|D(b) = d] ~ imE[Y|D(b) =d]. beB

® Rather than estimating b-specific effects, one may again choose to normalize and pool
Discontinuity Designs November 18, 2020
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Framework for Regression Kink Designs

® Y € R is a scalar outcome of interest
® D € R is a continuously distributed treatment
® R € R is a continuously distributed running variable

® (J € R is a continuous latent variable denoting the unobserved determinants of Y

Consider an all-causes model of the outcome variable: Y = g(D, U)

® g(-) is an unknown function of the observed and unobserved determinants of Y

The dependency between R and U is not restricted

® The distribution function fy z(u|r) is continuously differentiable in r at r = ¢
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Framework for Regression Kink Designs

® Analogously to regression discontinuity designs, two scenarios are possible:

@ Sharp: the treatment is D = h(R), where h(-) is a known function

@® Fuzzy: the treatment is D = h(R, U), where h(-) is an unknown function (U is latent)

® In both cases, g(-) is continuously differentiable at the threshold

@ Sharp: g(d, u) is continuously differentiable in d at d = h(c)

® Fuzzy: g(d, u) is continuously differentiable in d at d = h(c, u) for every u

® In both cases, h(-) is continuous, but its derivative is discontinuous at the threshold

@ Sharp: h(r) is continuous, but h'(r) is discontinuous at r = ¢

@® Fuzzy: h(r,u) is continuous for every u, but h'(r,u) is discontinuous at r = ¢ for every u

Francesco Ruggieri Discontinuity Designs November 18, 2020



Framework for Regression Kink Designs

To identify a target parameter in a sharp regression kink design, consider any r # ¢ and

SE[YIR=r] 0

= - DRl (). 0)R=1] (¥ =g(D. V)
= 6 /g(h( ), u) fuir (ulr) du (definition of E[])
/8r [g (h(r), u)] fu|r (u|r) du (Fubini's Theorem)

) [ (;dg(h(r),u)> fum ulr) o+ [ & (00).0) (3o (1))

where the last equality follows from an application of the chain rule
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Framework for Regression Kink Designs

® By assumption, h'(r) is discontinuous at r = ¢

® Take the limits of % asrlcandrtc:

lim
rlc

. OE[Y|R =]

lim —— =
rlc or

. OE[YIR=1] .
lim —— = Ilim
rtc or
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Framework for Regression Kink Designs

These limits can be differenced out:

__OE[Y|R=1r] . OE[Y|R=1]
lim — lim =
rlc or rftc or

lim ' (r) — lim h’(r)) x E [aadg (h(c), U) ’R - c]

rlc rfc
Rearranging terms, the Local Average Response (LAR) of Y to D is

OE[Y|R=r]
4 or —

E { 0 (h(c), U) ‘R _ C} _ limpye e

SE[Y|R=r]
g B
od limepc b'(r) — limpqc H(r)

r

This is the average effect of a marginal increase in D on Y at R=—c¢

® The LAR averages marginal effects over the distribution of U among agents with R = ¢
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Framework for Regression Kink Designs

® A similar derivation in the case of a fuzzy regression kink design leads to

OE[Y|R=r] OE[Y|R=r]
or or

— Iim,TC
OE[D|R=r]
< or

Iimric

OE[D|R=r] .
c o lim.

E| -2 g (h(e,U), U) x w(c, U) ]R - c] -
od Iim,¢

where w(c, U) is proportional to the size of the kink (analogously to an IV first stage)

® Recall that D = h(R, U). If a monotonicity assumption holds, i.e.,

jim 20 U) i O U)o p (Iim Oh(r.U) iy OB U)) >0

rlc or rtc or rlc or rfc or

then the target parameter has a similar interpretation to the LATE

® Weights w(c, U) are non-zero for agents whom the kink induces to choose more D
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Dong (2018)

® This class of discontinuity designs is based on a working paper by Dong (2018)

® Y € R is a scalar outcome of interest, D € {0,1} is a binary treatment

D and Y are linked by potential outcomes Y(0), Y(1)

® R € R is a continuously distributed running variable

Suppose that compliance with the treatment is one-sided, so that
Dx(I[R>c]-I[R<c])>0  with probability one

where ¢ € R. D =1 is not available to agents for which R < ¢
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Dong (2018)

® For clearer intuition, construct a binary instrumental variable Z =1[R > ¢]
® Temporarily define the propensity score as p(Z) =P (D = 1|2)

® One-sided noncompliance implies that

p(1)=P(D=1Z=1)=P(D=1|R > c)
>P(D=1R<c)=P(D=1|Z=0)=p(0)=0
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Dong (2018)

As usual, denote potential treatments with D(z), z € {0,1}
Because p(0) = 0, always-takers and defiers can be safely assumed away

Agent types can be characterized as follows:

— if D(0) = D(1
cp, if D(0)=0an

The definition of T completely partitions the set of realizations of (D(0), D(1))

D(1) > D(0) almost surely, so the Imbens and Angrist monotonicity condition holds
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Dong (2018)

® The propensity score was previously defined as p(Z) =P (D = 1|2)

This definition is unnecessarily restrictive because R may predict the treatment state

Define the propensity score as p(Z,R) =P (D =1|Z,R)
® Z =1I[R > c] is a deterministic function of R, so p(Z,R) = p(R) =P (D = 1|R)

Z being a function of R additionally implies the conditional exogeneity assumption

(Y(0), Y(1),D(0),D(1)) L ZIR=r ¥r

Vytlacil (2002)'s equivalence result can be used to derive a nonparametric Roy model

® This model meets all of the Imbens and Angrist assumptions
Discontinuity Designs November 18, 2020 22



Dong (2018)

® | et / denote any open or closed interval and define a continuous random variable V;

Vi L (Y(0), Y(1), D(0),D(1), Z) is uniformly distributed over [

® Define a random variable U conditional on each element in the support of R:

(U|R = r) = ]I[T =cp,R= r] V[O,p(r)] +]I[T =nR= r] V(p(,)’l]
® For every r, (U|R = r) is a continuously distributed random variable with support [0, 1]

® (J can be used to construct the selection model
D=D(r)=1[U<p(r)] Vr

where D(R) = D(R,Z) = D(Z) indicates the potential treatment associated with R
Discontinuity Designs November 18, 2020
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Dong (2018)

® For each element in the support of R, the propensity score can be expressed as

p(r)=P(D=1R=r)
=P(U<pR)IR=r) (D(R)=1I[U<p(R)])
—P(U<p(1))
=P (Fy (U) < Fy(p(r))) (U is continuous)

=P (C/ < Fy (p(r))) with 0 ~ 1[0, 1]
= Fuy (p(r))

® Thus, the selection model can be written as
D(r) = 1[U < p(r)] = 1[Fu (U) < Fu (p(r] =T [0 < p(r)]  vr

where U ~ U0, 1]. For ease of notation, U is denoted with as U
ey T ety 10 G
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Dong (2018)

This nonparametric Roy model is nested in the Imbens and Angrist model:

® (Y(0),Y(1),D(0),D(1)) L ZIR = r Yr, because Z is a deterministic function of R

® D(1) > D(0) almost surely, because compliance with the treatment is one-sided

® U L ZIR =rVr, because U is a function of D(Z) and the completely idiosyncratic V;
O Potential treatments conditional on any R = r are equal in the two models:

r>cand T =n = (UR=r)= V(pin1 >p(r) = D(r)=0
r>cand T=cp = (UR=r)= Vg <p(r) = D(r)=1

( ) =
r<cand T=n = (UR=r)= Vpny=Voy>p(r)=0 = D(r)=
( ) = Viop(r) = Vioo) = 0= p(r) = D(r) =0

r<cand T=c¢p = (UR=r

where the last scenario is a knife-edge case (see footnote 3 in the MTE supplement)
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Dong (2018)

Let us make a few additional assumptions:

® E[Y(d)|R =r,U = u] is a continuously differentiable function of (r,u) for d =0,1
® The propensity score, p(r), is continuous and differentiable at r = ¢

® The derivative of p(r) is discontinuous at r = ¢

This setting is similar to a fuzzy regression kink design

® But the treatment is binary as opposed to continuously distributed

® A target parameter may be identified with a standard argument from the MTE framework...
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Dong (2018)

As usual, let us express the mean of Y conditional on D =1 and R = r:
E[YID=1,R=r=E[DY(1)+(1-D)Y(0)|D=1,R =]
=E[Y())|[D=1,R=1]
—E[YQ)|U<p(R,R=r] (D=I[UZ p(R)])
—E[Y(1)|U < p(r), R = r]

p(r)
:pélr)/o E[Y()|U=u,R=r]du  (U~UJ0,1])

Analogously, the mean of Y conditional on D =0and R=ris

1
]E[Y|D—0,R—r]—1_1p(r)/()E[Y(O)U—u,R—r]du
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Regression Probability Kink Designs

Dong (2018)

The Law of Iterated Expectations further implies that

E[YIR=r=E[Y|D=1,R=r]xP(D=1
+E[Y|D=0,R=r] xP(D=0|
=E[Y|D=1,R=r] x p(r)
+E[YID=0,R=r]x(1—p(r))

IR=r)

R
R=r)

p(r) 1
:/ E[Y(l)\U:u,R:r]du—&-/ E[Y(0)|U=u,R=r]du
0 p(r)
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Regression Probability Kink Designs

Dong (2018)

Leibniz’s rule implies that the derivative of E[Y|R = r| with respect to R, at r # c, is

aE[YJ?’r? =1 ag(rr) x E[Y(1)|U = p(r), R =r] + /p(r) OE[Y (1)U ;rp(r), R=r.
dp(r) L BE[Y(0)|U = p(r), R = 1]
o YO =R R /P(r) or du

2U) S By (1) = Y(O)U = p(r), R = 1]

/1&MWMU=M¢R=4W
p(r) ar

P GEY (1)|U = p(r), R = 1]
+/0 o du +

where E[Y(1) — Y(0)|U = p(r),R=r] isthe MTE of Don Y at U=p(r) and R=r
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Dong (2018)

® By assumption, the derivative of the propensity score is discontinuous at r = ¢

® Take the limits of % asrlcandrtc:

OE[YIR=r] _ . 0p(r)

li x E[Y(1) — Y(0)|R = c, U = p(c)]

rlc or rlc or
n /"(C) GEY()IR=c,U=4d] /1 GE[YOIR=c U=4]
0 or p(e) or
im PEVIR= i 2P0 sty (1) — v (0)1R = €,U = p(e)]
N /PM OE[Y(W)R=cU=u] N /1 GE[Y(Q)R=c,U=4]
0 or p(c) or
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Dong (2018)

These limits can be differenced out:

. OE[Y|[R=r] . OE[Y|IR=r] (. 9p(r) . 0Jp(r) B B
Irlircl or lr'p;' or B lrlﬂ:] or lr'p;' or X MTE(U = p(c). R =c)

Rearranging terms, the Marginal Treatment Effect of D on Y at U =p(c)and R=cis

lim,,c 8]E[Y6|R:r] — limyc H]E[\(;\R:r]
E [Y(l) - Y(0)|U = p(C)7 R= C] = . ¢r9p(r) - 8p(r)r
||m,¢C ar ||m,¢c “or

This point-identified parameter is the MTE for agents

® Whose realization of the running variable is R = ¢, and

® Who are at the margin of choosing D=1if R=c¢
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Summary

Summary

® RD designs with multiple cutoffs or multiple running variables typically require an empiricist
to choose whether to estimate cutoff-specific effects or normalize and pool

® Regression probability kink designs allow a researcher to derive a nonparametric Roy model
and point identify a “local” (in terms of R) marginal treatment effect
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