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Framework for Sharp Regression Discontinuity Designs

Framework for Sharp Regression Discontinuity Designs

• Y ∈ R is a scalar outcome of interest, D ∈ {0, 1} is a binary treatment

• D and Y are linked by potential outcomes Y (0),Y (1)

• R ∈ R is a running variable, not necessarily continuously distributed everywhere

• The dependency of D and R with Y (0),Y (1) is not restricted

• There exists a cutoff c ∈ R such that D = I [R ≥ c]

• The treatment is a deterministic function of the running variable

• E [Y (d)|R = r ] is continuous at r = c for d = 0, 1
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Framework for Sharp Regression Discontinuity Designs

Framework for Sharp Regression Discontinuity Designs

• Since D = 1 if and only if R ≥ c and D = 0 if and only if R < c :

E [Y |R = r ] = E [Y |R = r ,D = 1] = E [Y (1)|R = r ] for every r ≥ c

E [Y |R = r ] = E [Y |R = r ,D = 0] = E [Y (0)|R = r ] for every r < c

• Taking limits for r ↓ c and r ↑ c :

lim
r↓c

E [Y |R = r ] = lim
r↓c

E [Y (1)|R = r ] = E [Y (1)|R = c]

lim
r↑c

E [Y |R = r ] = lim
r↑c

E [Y (0)|R = r ] = E [Y (0)|R = c]

where the last equality follows in both cases from continuity of E [Y (d)|R = r ] at r = c

• These limits can be differenced out to point identify

ATE (c) ≡ E [Y (1)− Y (0)|R = c] = lim
r↓c

E [Y |R = r ]− lim
r↑c

E [Y |R = r ]
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Sharp Regression Discontinuity Designs: Extensions

Sharp Regression Discontinuity Designs: Extensions

1 Multiple Cutoffs: the cutoff is a discrete random variable, C , rather than a constant, c

• Example: plurality voting in elections with more than two competing candidates

• Example: state or local governments setting eligibility cutoffs for a federal program

2 Multiple Running Variables: R ∈ Rdr , with dr > 1, as opposed to R ∈ R
• Example: a scholarship awarded to students who score above two subject-specific thresholds

• Example: counties that require voting by mail vs. counties that allow in-person voting
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Sharp Regression Discontinuity Designs: Extensions Multiple Cutoffs

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

• Y ∈ R is a scalar outcome of interest, D ∈ {0, 1} is a binary treatment

• C is a cutoff random variable with support C =
{
c1, . . . , cj

}
• The probability of each cutoff realization is pc ≡ P (C = c) ∈ [0, 1]

• R ∈ R is a continuously distributed running variable with density fR(r)

• fR|C (r |cj) denotes the density of R conditional on C = cj for j = 1, . . . , j

• In this setting, different agents may face different cutoffs
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Sharp Regression Discontinuity Designs: Extensions Multiple Cutoffs

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

• For simplicity, focus on the sharp design, so D = I [R ≥ C ]

• D and Y are linked by potential outcomes Y (0),Y (1), which are also functions of C :

Y (0,C ),Y (1,C ) s.t. Y =

j∑
j=1

I [C = cj ]× [DY (1, cj) + (1− D)Y (0, cj)]

Y (d , cj) highlights that potential outcomes may be affected by the realization of C

• Further assumptions:

1 E [Y (d , c)|R = r ,C = c] is continuous in r at r = c for every c ∈ C and d = 0, 1

2 The densities fR|C (r |c) are positive and continuous in r at r = c for every c ∈ C
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Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)
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Sharp Regression Discontinuity Designs: Extensions Multiple Cutoffs

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

Rather than estimating cutoff-specific effects, one may choose to normalize and pool:

1 Normalize: define the normalized running variable R̃ ≡ R − C

• In words, center each agent’s running variable around their cutoff realization

2 Pool: identify a target parameter using standard regression discontinuity arguments

• This approach ignores the heterogeneity in the distributions of Y (0) and Y (1) in terms of C

• The point-identified target parameter is a pooled estimand:

τP ≡
j∑

j=1

E [Y (1, cj)− Y (0, cj)|R = cj ,C = cj ]× ω(cj)

where

ω(c) ≡
fR|C (c|c)× P (C = c)∑

c′∈C fR|C (c ′|c ′)× P (C = c ′)
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Sharp Regression Discontinuity Designs: Extensions Multiple Cutoffs

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016)

1 Constant treatment effects: if Y (1, cj)− Y (0, cj) = τ(cj) for j = 1, . . . , j ,

τP ≡
∑j

j=1 τ(cj)× ω(cj) is a weighted average of cutoff-specific constants

2 Ignorable R: if E [Y (1, cj)− Y (0, cj)|R = cj ,C = cj ] = E [Y (1, cj)− Y (0, cj)|C = cj ],

τP ≡
j∑

j=1

E [Y (1, cj)− Y (0, cj)|C = cj ]× ω(cj)

so τP may be estimated with global polynomial techniques

3 Ignorable C : if E [Y (1, cj)− Y (0, cj)|R = cj ,C = cj ] = E [Y (1, cj)− Y (0, cj)|R = cj ],

τP ≡
j∑

j=1

E [Y (1, cj)− Y (0, cj)|R = cj ]× P (C = cj)

so τP is a weighted average of “local” (in terms of R) average treatment effects
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Sharp Regression Discontinuity Designs: Extensions Multiple Running Variables

Keele and Titiunik (2015)

• Y ∈ R is a scalar outcome of interest, D ∈ {0, 1} is a binary treatment

• D and Y are linked by potential outcomes Y (0),Y (1)

• Treatment assignment changes discontinuously at a border B
• B is geographic boundary that separates a treated area (Bt) from a control area (Bc)

• R ∈ R2 is a pair of running variables usually denoting latitude and longitude

• For simplicity, focus on the sharp design, so

D = I [R1 ≥ b1]× I [R2 ≥ b2]

where (b1, b2) ∈ B is a boundary point
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Sharp Regression Discontinuity Designs: Extensions Multiple Running Variables

Keele and Titiunik (2015)

• As in the scalar case, average potential outcomes are continuous at the border:

E [Y (d)| (R1,R2) = (r1, r2)] is continuous in r1, r2 at r1 = b1, r2 = b2

for every (b1, b2) ∈ B and d = 0, 1

• Let R = (R1,R2), r = (r1, r2), and b = (b1, b2). Then

lim
r→b;r∈Bt

E [Y |R = r] = lim
r→b;r∈Bt

E [Y (1)|R = r] = E [Y (1)|R = b]

lim
r→b;r∈Bc

E [Y |R = r] = lim
r→b;r∈Bc

E [Y (0)|R = r] = E [Y (0)|R = b]

where the last equality follows in both cases from continuity of E [Y (d)|R = r] at r = b
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Sharp Regression Discontinuity Designs: Extensions Multiple Running Variables

Keele and Titiunik (2015)

• As in the scalar case, these limits can be differenced out to identify

E [Y (1)− Y (0)|R = b] = lim
r→b;r∈Bt

E [Y |R = r]− lim
r→b;r∈Bc

E [Y |R = r]

where E [Y (1)− Y (0)|R = b] is the ATE of D on Y at the border point b ∈ B

• In practice, one may construct a scalar running variable as the Euclidean distance

D(b1, b2) =

√
(R1 − b1)

2 + (R2 − b2)
2

which reduces the design to a standard unidimensional regression discontinuity:

E [Y (1)− Y (0)|D(b) = 0] = lim
d↓0

E [Y |D(b) = d ]− lim
d↑0

E [Y |D(b) = d ] , b ∈ B

• Rather than estimating b-specific effects, one may again choose to normalize and pool
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

• Y ∈ R is a scalar outcome of interest

• D ∈ R is a continuously distributed treatment

• R ∈ R is a continuously distributed running variable

• U ∈ R is a continuous latent variable denoting the unobserved determinants of Y

• Consider an all-causes model of the outcome variable: Y ≡ g(D,U)

• g(·) is an unknown function of the observed and unobserved determinants of Y

• The dependency between R and U is not restricted

• The distribution function fU|R(u|r) is continuously differentiable in r at r = c
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

• Analogously to regression discontinuity designs, two scenarios are possible:

1 Sharp: the treatment is D = h(R), where h(·) is a known function

2 Fuzzy: the treatment is D = h(R,U), where h(·) is an unknown function (U is latent)

• In both cases, g(·) is continuously differentiable at the threshold

1 Sharp: g(d , u) is continuously differentiable in d at d = h(c)

2 Fuzzy: g(d , u) is continuously differentiable in d at d = h(c, u) for every u

• In both cases, h(·) is continuous, but its derivative is discontinuous at the threshold

1 Sharp: h(r) is continuous, but h′(r) is discontinuous at r = c

2 Fuzzy: h(r , u) is continuous for every u, but h′(r , u) is discontinuous at r = c for every u
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

To identify a target parameter in a sharp regression kink design, consider any r ̸= c and

∂E [Y |R = r ]

∂r
=

∂

∂r
E [g (h(r),U) |R = r ] (Y ≡ g(D,U))

=
∂

∂r

∫
g (h(r), u) fU|R (u|r) du (definition of E [·])

=

∫
∂

∂r
[g (h(r), u)] fU|R (u|r) du (Fubini’s Theorem)

= h′(r)

∫ (
∂

∂d
g (h(r), u)

)
fU|R (u|r) du +

∫
g (h(r), u)

(
∂

∂r
fU|R (u|r)

)
du

where the last equality follows from an application of the chain rule
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

• By assumption, h′(r) is discontinuous at r = c

• Take the limits of ∂E[Y |R=r ]
∂r as r ↓ c and r ↑ c :

lim
r↓c

∂E[Y |R = r ]

∂r
= lim

r↓c
h′(r)×

∫ (
∂

∂d
g (h(c), u)

)
fU|R (u|c) du

+

∫
g (h(c), u)

(
∂

∂r
fU|R (u|c)

)
du

lim
r↑c

∂E[Y |R = r ]

∂r
= lim

r↑c
h′(r)×

∫ (
∂

∂d
g (h(c), u)

)
fU|R (u|c) du

+

∫
g (h(c), u)

(
∂

∂r
fU|R (u|c)

)
du
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

These limits can be differenced out:

lim
r↓c

∂E[Y |R = r ]

∂r
− lim

r↑c

∂E[Y |R = r ]

∂r
=

(
lim
r↓c

h′(r)− lim
r↑c

h′(r)

)
× E

[
∂

∂d
g (h(c),U)

∣∣∣R = c

]
Rearranging terms, the Local Average Response (LAR) of Y to D is

E
[
∂

∂d
g (h(c),U)

∣∣∣R = c

]
=

limr↓c
∂E[Y |R=r ]

∂r − limr↑c
∂E[Y |R=r ]

∂r

limr↓c h′(r)− limr↑c h′(r)

This is the average effect of a marginal increase in D on Y at R = c

• The LAR averages marginal effects over the distribution of U among agents with R = c
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Framework for Regression Kink Designs

Framework for Regression Kink Designs

• A similar derivation in the case of a fuzzy regression kink design leads to

E
[
∂

∂d
g (h(c ,U),U)× ω (c ,U)

∣∣∣R = c

]
=

limr↓c
∂E[Y |R=r ]

∂r − limr↑c
∂E[Y |R=r ]

∂r

limr↓c
∂E[D|R=r ]

∂r − limr↑c
∂E[D|R=r ]

∂r

where ω(c ,U) is proportional to the size of the kink (analogously to an IV first stage)

• Recall that D = h(R,U). If a monotonicity assumption holds, i.e.,

lim
r↓c

∂h(r ,U)

∂r
≥ lim

r↑c

∂h(r ,U)

∂r
with P

(
lim
r↓c

∂h(r ,U)

∂r
> lim

r↑c

∂h(r ,U)

∂r

)
> 0

then the target parameter has a similar interpretation to the LATE

• Weights ω(c,U) are non-zero for agents whom the kink induces to choose more D
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Regression Probability Kink Designs

Dong (2018)

• This class of discontinuity designs is based on a working paper by Dong (2018)

• Y ∈ R is a scalar outcome of interest, D ∈ {0, 1} is a binary treatment

• D and Y are linked by potential outcomes Y (0),Y (1)

• R ∈ R is a continuously distributed running variable

• Suppose that compliance with the treatment is one-sided, so that

D × (I [R ≥ c]− I [R < c]) ≥ 0 with probability one

where c ∈ R. D = 1 is not available to agents for which R < c
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Regression Probability Kink Designs

Dong (2018)

• For clearer intuition, construct a binary instrumental variable Z ≡ I [R ≥ c]

• Temporarily define the propensity score as p(Z ) ≡ P (D = 1|Z )

• One-sided noncompliance implies that

p(1) ≡ P (D = 1|Z = 1) = P (D = 1|R ≥ c)

≥ P (D = 1|R < c) = P (D = 1|Z = 0) ≡ p(0) = 0
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Regression Probability Kink Designs

Dong (2018)

• As usual, denote potential treatments with D(z), z ∈ {0, 1}

• Because p(0) = 0, always-takers and defiers can be safely assumed away

• Agent types can be characterized as follows:

T ≡

{
n, if D(0) = D(1) = 0

cp, if D(0) = 0 and D(1) = 1

• The definition of T completely partitions the set of realizations of (D(0),D(1))

• D(1) ≥ D(0) almost surely, so the Imbens and Angrist monotonicity condition holds
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Regression Probability Kink Designs

Dong (2018)

• The propensity score was previously defined as p(Z ) ≡ P (D = 1|Z )

• This definition is unnecessarily restrictive because R may predict the treatment state

• Define the propensity score as p(Z ,R) ≡ P (D = 1|Z ,R)
• Z = I [R ≥ c] is a deterministic function of R, so p(Z ,R) = p(R) ≡ P (D = 1|R)

• Z being a function of R additionally implies the conditional exogeneity assumption

(Y (0),Y (1),D(0),D(1)) ⊥⊥ Z |R = r ∀ r

• Vytlacil (2002)’s equivalence result can be used to derive a nonparametric Roy model

• This model meets all of the Imbens and Angrist assumptions
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Regression Probability Kink Designs

Dong (2018)

• Let I denote any open or closed interval and define a continuous random variable VI

• VI ⊥⊥ (Y (0),Y (1),D(0),D(1),Z ) is uniformly distributed over I

• Define a random variable U conditional on each element in the support of R:

(U|R = r) ≡ I [T = cp,R = r ]V[0,p(r)] + I [T = n,R = r ]V(p(r),1]

• For every r , (U|R = r) is a continuously distributed random variable with support [0, 1]

• U can be used to construct the selection model

D = D(r) = I [U ≤ p(r)] ∀ r

where D(R) = D(R,Z ) = D(Z ) indicates the potential treatment associated with R

Francesco Ruggieri Discontinuity Designs November 18, 2020 23



Regression Probability Kink Designs

Dong (2018)

• For each element in the support of R, the propensity score can be expressed as

p(r) ≡ P (D = 1|R = r)

= P (U ≤ p(R)|R = r) (D(R) = I [U ≤ p(R)])

= P (U ≤ p(r))

= P (FU (U) ≤ FU (p(r))) (U is continuous)

= P
(
Ũ ≤ FU (p(r))

)
with Ũ ∼ U [0, 1]

= FU (p(r))

• Thus, the selection model can be written as

D(r) = I [U ≤ p(r)] = I [FU (U) ≤ FU (p(r))] = I
[
Ũ ≤ p(r)

]
∀ r

where Ũ ∼ U [0, 1]. For ease of notation, Ũ is denoted with as U
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Regression Probability Kink Designs

Dong (2018)

This nonparametric Roy model is nested in the Imbens and Angrist model:

1 (Y (0),Y (1),D(0),D(1)) ⊥⊥ Z |R = r ∀ r , because Z is a deterministic function of R

2 D(1) ≥ D(0) almost surely, because compliance with the treatment is one-sided

3 U ⊥⊥ Z |R = r ∀ r , because U is a function of D(Z ) and the completely idiosyncratic VI

4 Potential treatments conditional on any R = r are equal in the two models:

r ≥ c and T = n =⇒ (U|R = r) = V(p(r),1] > p(r) =⇒ D(r) = 0

r ≥ c and T = cp =⇒ (U|R = r) = V[0,p(r)] ≤ p(r) =⇒ D(r) = 1

r < c and T = n =⇒ (U|R = r) = V(p(r),1] = V(0,1] > p(r) = 0 =⇒ D(r) = 0

r < c and T = cp =⇒ (U|R = r) = V[0,p(r)] = V[0,0] = 0 = p(r) =⇒ D(r) = 0

where the last scenario is a knife-edge case (see footnote 3 in the MTE supplement)
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Regression Probability Kink Designs

Dong (2018)

• Let us make a few additional assumptions:

• E [Y (d)|R = r ,U = u] is a continuously differentiable function of (r , u) for d = 0, 1

• The propensity score, p(r), is continuous and differentiable at r = c

• The derivative of p(r) is discontinuous at r = c

• This setting is similar to a fuzzy regression kink design

• But the treatment is binary as opposed to continuously distributed

• A target parameter may be identified with a standard argument from the MTE framework...
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Regression Probability Kink Designs

Dong (2018)

As usual, let us express the mean of Y conditional on D = 1 and R = r :

E [Y |D = 1,R = r ] = E [DY (1) + (1− D)Y (0)|D = 1,R = r ]

= E [Y (1)|D = 1,R = r ]

= E [Y (1)|U ≤ p(R),R = r ] (D = I [U ≤ p(R)])

= E [Y (1)|U ≤ p(r),R = r ]

=
1

p(r)

∫ p(r)

0

E [Y (1)|U = u,R = r ] du (U ∼ U [0, 1])

Analogously, the mean of Y conditional on D = 0 and R = r is

E [Y |D = 0,R = r ] =
1

1− p(r)

∫ 1

p(r)

E [Y (0)|U = u,R = r ] du
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Regression Probability Kink Designs

Dong (2018)

The Law of Iterated Expectations further implies that

E [Y |R = r ] = E [Y |D = 1,R = r ]× P (D = 1|R = r)

+ E [Y |D = 0,R = r ]× P (D = 0|R = r)

= E [Y |D = 1,R = r ]× p(r)

+ E [Y |D = 0,R = r ]× (1− p(r))

=

∫ p(r)

0

E [Y (1)|U = u,R = r ] du +

∫ 1

p(r)

E [Y (0)|U = u,R = r ] du
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Regression Probability Kink Designs

Dong (2018)

Leibniz’s rule implies that the derivative of E[Y |R = r ] with respect to R, at r ̸= c , is

∂E[Y |R = r ]

∂r
=

∂p(r)

∂r
× E[Y (1)|U = p(r),R = r ] +

∫ p(r)

0

∂E[Y (1)|U = p(r),R = r ]

∂r
du

− ∂p(r)

∂r
× E[Y (0)|U = p(r),R = r ] +

∫ 1

p(r)

∂E[Y (0)|U = p(r),R = r ]

∂r
du

=
∂p(r)

∂r
× E[Y (1)− Y (0)|U = p(r),R = r ]

+

∫ p(r)

0

∂E[Y (1)|U = p(r),R = r ]

∂r
du +

∫ 1

p(r)

∂E[Y (0)|U = p(r),R = r ]

∂r
du

where E[Y (1)− Y (0)|U = p(r),R = r ] is the MTE of D on Y at U = p(r) and R = r
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Regression Probability Kink Designs

Dong (2018)

• By assumption, the derivative of the propensity score is discontinuous at r = c

• Take the limits of ∂E[Y |R=r ]
∂r as r ↓ c and r ↑ c :

lim
r↓c

∂E[Y |R = r ]

∂r
= lim

r↓c

∂p(r)

∂r
× E[Y (1)− Y (0)|R = c ,U = p(c)]

+

∫ p(c)

0

∂E[Y (1)|R = c ,U = u]

∂r
du +

∫ 1

p(c)

∂E[Y (0)|R = c ,U = u]

∂r
du

lim
r↑c

∂E[Y |R = r ]

∂r
= lim

r↑c

∂p(r)

∂r
× E[Y (1)− Y (0)|R = c ,U = p(c)]

+

∫ p(c)

0

∂E[Y (1)|R = c ,U = u]

∂r
du +

∫ 1

p(c)

∂E[Y (0)|R = c ,U = u]

∂r
du
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Regression Probability Kink Designs

Dong (2018)

These limits can be differenced out:

lim
r↓c

∂E[Y |R = r ]

∂r
− lim

r↑c

∂E[Y |R = r ]

∂r
=

(
lim
r↓c

∂p(r)

∂r
− lim

r↑c

∂p(r)

∂r

)
×MTE (U = p(c),R = c)

Rearranging terms, the Marginal Treatment Effect of D on Y at U = p(c) and R = c is

E [Y (1)− Y (0)|U = p(c),R = c] =
limr↓c

∂E[Y |R=r ]
∂r − limr↑c

∂E[Y |R=r ]
∂r

limr↓c
∂p(r)
∂r − limr↑c

∂p(r)
∂r

This point-identified parameter is the MTE for agents

• Whose realization of the running variable is R = c , and

• Who are at the margin of choosing D = 1 if R = c
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Summary

Summary

• RD designs with multiple cutoffs or multiple running variables typically require an empiricist
to choose whether to estimate cutoff-specific effects or normalize and pool

• Regression probability kink designs allow a researcher to derive a nonparametric Roy model
and point identify a “local” (in terms of R) marginal treatment effect
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