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Framework for Marginal Treatment Effects

® Y € R is a scalar outcome of interest, D € {0,1} is a binary treatment

D and Y are linked by potential outcomes Y(0), Y'(1)

X € X CR% is a vector of predetermined, observable characteristics

® U € R is an unobserved and continuously distributed latent variable

Z € Z C R is a scalar instrumental variable

® 7 satisfies the conditional exogeneity assumption (Y(0), Y(1),U) L Z|X
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Framework for Marginal Treatment Effects

® v (-) is an unknown function of X and Z such that D =1[U < v(X, Z)]

® U, v(X,Z) are additively separable (no interaction between observables and unobservables)

® y(X,Z) — U denotes the net utility from choosing treatment state D = 1

e Without loss, the selection equation can be normalized to D =1 [U < p(X, Z)]
® p(X,Z)=P(D =1|X, Z) is the propensity score (also denoted as P)

® U is a latent random variable uniformly distributed on [0, 1]
® MTE(u) =E[Y(1) — Y(0)|U = u] is the Marginal Treatment Effect of D on Y

® MTR(u)(d|u) = E[Y(d)|U = u] is the Marginal Treatment Response
® The Marginal Treatment Effect of D on Y at U = v is MTE(u) = MTR(1|u) — MTR(0|u)
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Identification

® Several standard parameters are weighted averages of marginal treatment responses

® Target parameters: ATE, ATT, ATU, LATE, PRTE, Average Selection Bias

® Estimands: 1V, TSLS, OLS (with and without covariates)

® Multiple identification approaches have been proposed within the MTE framework
® Point identification: these approaches can be broadly classified into
® Nonparametric: Heckman and Vytlacil (1999)’s Local IV Estimand if Z is continuous

® Parametric: linear-in-parameters and partially linear models of the MTR functions

® Partial identification: Mogstad, Santos, and Torgovitsky (2018)
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Linear-in-Parameters Models of the MTR Functions
Point Identification: Linear-in-Parameters Models of the MTR Functions

® A general linear-in-parameters model of the MTR functions is
k
MTR(d|u,x) = E[Y(d)|U = u, X =x] = 6kbi (dJu,x)  ford =0,1
k=1

where {6, }¥_, are unknown coefficients and {b,};_, are known functions

® When constructing a linear-in-parameters model, a researcher must choose:

® Whether to allow for additive separability between U and X

® The order of the polynomials of U and X and/or the sieve for U and X

® |f observables and unobservables are assumed not to be additively separable:
MTR(d|u,x) = E[Y(d)|X = x,U = u] = ag + Bgu + x'va + ux'dq  for d =0,1
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Linear-in-Parameters Models of the MTR Functions
Point Identification: Linear-in-Parameters Models of the MTR Functions

E[YID=1,P=uX=x]=E[DY(1)+(1-D)Y(0)|D=1,P=u,X =x]
=E[YQ)|D=1,P=u,X = x|
_EY()U<PP=uX=x (D=I[U< p(X,2)])
=E[Y(1)|U < u, X =] (Z L UIX)

ZE/UE[Y(1)|W:W,X:x]dW (U ~U0,1])
uJo

1 u
m / [ + Biw + x"y1 4+ wx'61] dw
0

1 1)
Zlagu+ &u2 + ux'y + Px 2
u 2 2

]
:al—i—%u—i-x"yl—kux'al
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Linear-in-Parameters Models of the MTR Functions
Point Identification: Linear-in-Parameters Models of the MTR Functions

® Thus: ]E[Y|D:17P:u7X:x]:a1+%u+x"yl—|—ux’%

Analogously: E[Y|D =0,P=u, X =x] = (Oéo + %) + %u—&—x’ (70 + %o) + ux’%o
® Goal: point identify parameters {ad,ﬁd,'yd,éd}de{o’l} of the linear MTR functions

® |Implementation: regress Y on 1, P, X, and PX separately for units with D € {0,1}

Y =a+ B8P+ X7, +PX'6j+ Ry  ford=0,1

® Back out MTR parameters using regression coefficients:
o1 = aj B1 = 2p1 M =7 01 = 267
g = a5 — B Bo = 255 Yo =75 — & 5o = 205
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® Example: “Public Schooling for Young Children and Maternal Labor Supply” (AER, 2002)

This paper by Jonah Gelbach provides an interesting setup for the MTE framework

Goal: estimate the effect of public school enrollment on women’s labor supply

Public school enrollment is not as-good-as randomly assigned

® Parents may choose to hold their children back a year or enroll them in private school

Institutional framework: parents’ ability to enroll a child in public kindergarten in the academic
year during which the child turns five depends on the calendar date of the child’s birth

e Empirical strategy: instrument public school enrollment with child’s quarter of birth
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The author’'s TSLS estimate is ~ 2.71 and statistically significant at conventional levels

® However, it is hard to provide a clear economic interpretation to this estimate

® The main specification conditions linearly on covariates and uses four instruments

® The TSLS estimand is a weighted average (likely with negative weights) of treatment effects

Let us explore treatment effect heterogeneity in a MTE framework

® A linear-in-parameters model of the MTR functions:
MTR(d|u,x) = E[Y(d)|X = x,U = u] = ag + Bgu+ x'vq4 + ux'dy ~ for d =0,1

where D € {0,1} denotes public school enrollment and X is a vector of covariates
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This figure plots the estimated MTE function, where the vector X is evaluated at its mean
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® The child’s quarter-of-birth instrument vector is defined as

Z T[QOB = Q2-1974]
7 — | 2| _ |1[QOB = Q3-1974]
~ |Z|  |I[QOB = Q4-1974]

Z, 1[QOB = Q1-1975]

® The estimated MTE function can be used to compute interpretable target parameters:

p(x, z2) < u < p(x, 23)]

o 1 I

LATE,, (%) = / MTE(u, %) [ _ _ du ~ 3.45
0 p(X,Z3)—p(X,Z4)

. 3 N | [;\(X, z3) < u < p(x, zz)}

LATE,, ., (Xx) = / MTE(u, X) — — du =~ 2.77
0 p(x,z2) — p(x, z3)

o 3 11 [E(x,zz) <u< E(x,zl)}

LATE,,,(X) = / MTE(u,X) = = du ~ 2.38
0 p(X7zl)7p(X7z2)
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Enrolling a child in public school in Q1-1975 implies the child is not even five years old

Mothers who are willing to do so are likely to be more sensitive to public subsidies than
mothers who are shifted into the treated arm when a child was born in Q2-1974

This unobserved heterogeneity may explain Imz‘,_m > Ima_ﬂz > Iﬂ"_[‘\lilzz_>Zl

® A mother's opportunity cost of not working (i.e., her return from working) is increasing in her
willingness to delay the enrollment of a five-year old child in a public kindergarten

Modeling the MTR functions allows an empiricist to analyze unobserved heterogeneity

® |inear-in-parameters models of the MTR functions are not the only option...
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

An alternative to linear-in-parameters models is partially linear models

® A common partially linear model of the MTR functions is
MTR(d|u,x) = E[Y(d)|X = x, U = u] = gg (u) + x'Bd

where g4 is an unknown function of the latent variable U

This model assumes additive separability between observables and unobservables

® Point identification of the MTR and MTE functions follows Robinson (1988)
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

E[YID=1,P=u,X=x]=E[DY(1)+(1-D)Y(0)|D=1,P=u,X =x]
=E[Y(1)|D=1,P=u,X =]
=E[Y(D)IU<LS P,P=u,X = x] (D =1[U < p(X,2)])
=E[Y(1)|U < u, X =] (Z L UIX)

ZE/UE[Y(1)|W=w,X=X]dW (U~ulo,1])
uJo

1 [ '8 dwr
_E/o (g1 (w)+x'p1)d

= % <UX’ﬁ1 +/0 g1 (w) dW)

1 u
:x/ﬁl—i——/ g1 (w) dw
uJo
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

® Thus: E[Y|D=1,P=u,X=x]=x'f1 + %fougl(w)dw

e Analogously: E[Y|D =0,P = u, X = x] = X' + 1= [ g (w) dw

® The Law of Iterated Expectations implies that
E[lYIP=u,X=x]=E[YID=1LP=u,X=x]xP(D=1P=u,X =x)
+E[YID=0,P=u,X=x]xP(D=0|P=u,X=x)
=ElYID=1,P=uX=x]xu
+EYID=0,P=u,X=x]x(1-u)

u 1
= ux’ﬁl—l-/ g1 (w) dw+(1—u)x’ﬂo+/ &o (w) dw
0 u

u 1
:x'ﬂoJrux’(ﬁl—ﬂo)Jr/o gl(w)dw+/ go (w) dw
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions
® Under this parameterization, the conditional mean of the observed outcome is
E[Y|P=u,X =x] = x'Bo + ux' (1 — o) + & (u)

where g ( fo a1 (w)dw + f 8o (w) dw is an unknown function of the latent variable

® In a linear-in-parameters model, g (u) would be sieved

® In a partially linear model, g (u) can be estimated with a kernel-based approach

® The goal is to point identify the Marginal Treatment Effect function:

MTE (u, x) = MTR(1|u, x) — MTR(0|u, x)
= (g1 (u) + x'B1) — (80 (u) + X' Bo)
= x"(B1 — Bo) + &1 (u) — g0 (u)
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

® Using the same derivation as Heckman and Vytlacil (1999)'s Local IV Estimand:

MTE(x) = 5 EIYIP = p.X =x]| _ =X (51— o) +€ (0

® Combining the two previous expressions for MTE(u, x):

MTE (u, x) = X" (81 — Bo) + &1 (v) — go (u) = X" (B1 — o) + & (u)
® This is not surprising if one exploits the definition of g (u):

g)=1 [/Ougl(w)dw/ulgo(w)dw} — 1 (u) — & (1)

which follows from an application of Leibniz’s rule

¢ |Implication: estimating the MTE function entails estimating the derivative of g (U)
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

® |dentification of the MTEs in this class of partially linear models follows Robinson (1988)

® Recall that the conditional mean of the observed outcome is

E[Y|P,X] = X'Bo+ PX' (51 — Bo) +&(P)

® The Law of Iterated Expectations implies that
E[Y|P] =E[E[Y|P, X]|P]
=E[X'Bo+ PX" (81 — fo) +&(P)|P]
=E[X'|P] o+ PE[X'|P] (81 — Bo) + & (P)
* Define Y =Y —E[Y|P] and X = X — E[X|P], then add and subtract E[Y|X, P]:
Y =E[Y|X,P]—E[Y|P]+ Y —E[Y|X, P]
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions

® Replace E[Y|P, X] and E[Y]|P] with their expressions above:
Y = X'+ PX' (51— fo) + R
where R is a residual defined as R=Y —E[Y|X, P]

® By the Law of Iterated Expectations, this residual has two convenient properties:

® |t is mean independent of X:
E[RIX]=E[Y —E[Y|X,P]|X] =E[Y[X] - E[E[Y|X, P]|X] =E[Y|X] —E[Y[X] =0
® |t is mean independent of P:

E[RIP]=E[Y —E[Y|X,P]|P]=E[Y|P]-E[E[Y|X,P]|P]=E[Y|P]-E[Y|P]=0

e If E[R|X] =E[R|P] =0, both 5y and 31 — (o are linear regression coefficients
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ORI  Partially Linear Models of the MTR Functions

Point Identification: Partially Linear Models of the MTR Functions

© Estimate Y = Y —E[Y|P] and X = X — E[X|P] nonparametrically (P is a scalar)

® Local constant regression suffers from boundary bias, so local linear regression is preferable

® Perform a linear regression of Y on X and PX and store the estimated Bo and (31

© Estimate g (P)

® The mean of Y conditional on P, derived above, can be rearranged as
g(P)=E[Y —X'Bo— PX'(B1 — Bo) |P]

® Y, X, P, Bo, and 31 are now known, so g (P) can be estimated nonparametrically

® Recall that MTE (u, x) = x' (81 — Bo) + & (u), so g’ is of interest

® Local linear suffers from boundary bias in the first derivative, local quadratic is preferable

November 11, 2020 20
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Partially Linear Models of the MTR Functions
Point Identification: Partially Linear Models of the MTR Functions
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This figure plots the estimated MTE function (X = X) using data from Gelbach (AER, 2002)
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

© Partial Identification (Mogstad, Santos, and Torgovitsky 2018)
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

® Target parameters and common estimands are weighted averages of the MTR pairs

® Target parameters (ATE, ATT, ATU, LATE, PRTE, Average Selection Bias):
1 1
B*=T*(m)=E [/ mg (u, X) wg (u, Z) du} +E [/ my (u, X)wi (u, Z) du]
0 0
¢ Common estimands (IV, TSLS, OLS with and without covariates):
1
Bs =Ts(m) = [/ mo (u, X) wos (u, Z)du} +E [/ my (u, X)wis (u, Z) du]
0
where wos (1,2) =5(0,2) x [{u > p(2)] and wis (u,2) =s(1,z) x I[u < p(2)]

® [* and [s are identified linear maps of the MTR functions
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Estimands js are functions of the data and are thus known
Weights w}; (U, Z) and wys (U, Z), for d = 0,1, are functions of the data and identified

The Marginal Treatment Response functions, my (U, X) for d = 0,1, are unknown

® As a consequence, target parameters are unknown

Intuition: bound target parameters such that the implied MTR functions are “consistent”

with the data, i.e., they match known estimands via their (identified) weights

Formally, these bounds solve two convex optimization problems:

*= inf I* B = r*
gr= inf (m) B e (m)

where Mg ={me M :T4(m) = j; for all s € S}
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

® |ssue: the parameter space of MTR functions, M, is possibly infinite-dimensional
® Solution: replace M with a finite-dimensional subset My C M
® My could be specified as the finite linear basis

ka

Mg =< (mo,m) € M :my (u,x) = ZGdkbdk (u, x) for some {Odk}fdzl ,d=0,1
k=1

where {0} 12, are unknown coefficients and {bg }*, are known basis functions
® This is effectively a parameterization of the Marginal Treatment Response functions
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

® Parameterizing MTR functions as finite linear bases reduces the optimization problems to
;o Zl
—%

Ba= sup > B0 (box) + Y 01T} (brk)

00,0:€0 4 = k=1

kg kl
st Y Boklos (bok) + > O1il1s (brx) = B forallse S
k=1 k=1
and analogously for 8,

® Recall that the (identified) linear maps of the MTR functions are

5 (mg) = E [/ g (u, X)) (1, 2) du|  Tgs (mg) = [/ ma (. X) s (1, Z) o
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Mogstad, Santos, and Torgovitsky (2018) considers two main sets of finite linear basis:

©® Bernstein Polynomials: the kth Bernstein basis polynomial of degree k is

bE:[0,1] >R st bf(u)z(’;)uka—u)“ for k=0,1,...,k

® Constant Splines for exact computation of nonparametric bounds
® Suppose Z has discrete support and w} (u, z), d =0, 1, are piecewise constant in u
® Define a partition {Z/Ij}j;l of [0,1] such that w} (u, z), I[u < p(z)] are constant in each U
® Construct the basis functions
byi(u,x)=TucUy,x=x] forl<j<jand1</<]
whose linear combinations form constant splines over [0, 1] for each x
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Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

® For illustration purposes, the MTR functions are assumed to be known:

mo (u)
1

=0.6(1 — u)? + 0.4u(1 — u) + 0.30?
my (u) =0.7

5(1 — u)? +0.5u(1 — u) + 0.25u2

Outcome: Y € {0,1} is trivially bounded

o Instrument: Z € {0,1,2}, with P(Z=0)=05P(Z=1)=04,P(Z=2)=0.1

® Note: some of the paper’s figures incorrectly refer to Z € {1, 2,3} rather than Z € {0,1,2}
® Propensity scores: p(0) = 0.35, p(1) = 0.6, p(2) = 0.7

® Target parameter: LATE (0.35,0.9) = E[Y(1) — Y(0)|U € (0.35,0.9]]
® This target parameter requires extrapolation since the complier subpopulation is expanded
Marginal Treatment Effects: Implementation November 11, 2020

27



Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)
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This figure plots the DGP MTE function in Mogstad, Santos, and Torgovitsky (2018)
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Nonparametric bounds: [-0.421,0.500]

Weights
(where # 0) MTR
d=0 d=1
1
4
i
; 10.75
2 ——
0 0.5
e
2 10.25
i
4 —_—
— ()
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

u

u

‘ = Maximizing MTRs —— LATE(0.35, 0.90) == IV slope ‘

This figure plots maximizing MTRs when using only the IV slope coefficient
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Nonparametric bounds: [-0.411,0.500]

Weights
(where # 0) MTR
=0 d=1
11
4 —_—
i
. 0.75
2 S
ol 105
—2f B 0.25
B ]
—4
. 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u

’— Maximizing MTRs == LATE(0.35, 0.90) =1V slope OLS slope ‘

This figure plots maximizing MTRs when using both the IV and OLS slope coefficients
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)
Partial Identification: Mogstad, Santos, and Torgovitsky (2018)
Nonparametric bounds: [-0.320,0.407]

Weights

(where # 0) MTR
=0 d=1
6 — 1
4 S
10.75
2
——m
0 0.5
—
-2
10.25
—4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u

‘— Maximizing MTRs —— LATE(0.35,0.90) =1V slope (1[Z = 2]) IV slope (1[Z = 3]) ‘

This figure plots maximizing MTRs when breaking the IV slope into two components
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Nonparametric bounds: [-0.138,0.407]

Weights
(where # 0) MTR
=0 d=1
—_ —_
2
0.75
+40.25
_ol
: 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u
— Maximizing MTRs —— LATE(0.35, 0.90) = (1 — D)1[Z = 1] (1-D)jZz =2
—=— (1 - D)1[Z = 3] D1[Z =1] ——D1[Z = 2] D1[Z = 3]

This figure plots maximizing MTRs when using all IV-like estimands (sharp bounds)
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Nonparametric bounds, MTRs decreasing: [-0.095,0.077]

Weights

(where # 0) MTR
=0 d=1
1
2L
10.75
0 -o—g—c—a—5—0- 0.5
0.25
-2
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u
= Maximizing MTRs —— LATE(0.35,0.90) = (1 — D)1[Z = 1] (1-D)1[Z =2
(1 - D)1[Z = 3] D[z = 1) —~ D17 =2 D1[Z = 3]
This figure plots maximizing MTRs when restricted to be decreasing
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Partial Identification (Mogstad, Santos, and Torgovitsky 2018)

Partial Identification: Mogstad, Santos, and Torgovitsky (2018)

Order 9 polynomial bounds, MTRs decreasing: [0.000,0.067]

Weights
(where # 0) MTR
=0 d=1
11
2
0.75
10.25
9L
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
U u
— Maximizing MTRs —— LATE(0.35,0.90) = (1 — D)1[Z = 1] = (1 — D)1|Z = 2]
—=— (1 - D)1[Z = 3] D1z =1] ——D1[Z = 2] D1[Z = 3]

This figure plots maximizing MTRs when further restricted to be a 10th-order polynomial
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Summary

Summary

® Target parameters and common estimands are weighted averages of MTRs

e Within a MTE framework, point identification of target parameters usually entails

@ Specifying linear-in-parameters models of the MTR functions, or

@® Specifying partially linear models of the MTR functions

e Within a MTE framework, partial identification of target parameters entails computing bounds
such that the implied MTR functions are consistent with known estimands
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