Marginal Treatment Effects: Theory ECON 31720 Applied Microeconometrics

Francesco Ruggieri

The University of Chicago

November 4, 2020

- **1** Framework for Marginal Treatment Effects
- **2** Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- **③** Target Parameters as Weighted Averages of Marginal Treatment Effects
- **@** Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Ø Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

⁽⁸⁾ Target Parameters as Weighted Averages of Marginal Treatment Effects

@ Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

- $Y \in \mathbb{R}$ is a scalar **outcome** of interest, $D \in \{0,1\}$ is a **binary treatment**
- D and Y are linked by **potential outcomes** Y(0), Y(1)
- $X \in \mathbb{R}^{d_x}$ is a vector of predetermined, **observable** characteristics with support \mathcal{X}
 - Hereafter, all arguments will be made implicitly conditioning on X
- $U \in \mathbb{R}$ is an **unobserved** and continuously distributed **latent variable**
- $Z \in \mathbb{R}$ is a scalar **instrumental variable** with support \mathcal{Z}
 - Z satisfies the exogeneity assumption $(Y(0), Y(1), U) \perp Z$

- $\nu(\cdot)$ is an **unknown function** of Z such that $D = \mathbb{I}[U \le \nu(Z)]$
 - U, $\nu(Z)$ are additively separable (no interaction between policy shifters and unobservables)
 - $\nu(Z) U$ denotes the **net utility** from choosing treatment state D = 1
- Without loss, the selection equation can be normalized to $D = \mathbb{I}[U \le p(Z)]$
 - $p(Z) \equiv \mathbb{P}(D = 1|Z)$ is the propensity score
 - U is a latent random variable uniformly distributed on [0,1]
- $MTE(u) \equiv \mathbb{E}[Y(1) Y(0)|U = u]$ is the Marginal Treatment Effect of D on Y
 - MTE(u) is the Average Treatment Effect of D on Y for agents with unobservables U = u
- Plotting the Marginal Treatment Effect function is informative about choice heterogeneity

2 Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

I arget Parameters as Weighted Averages of Marginal Treatment Effects

(1) Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Unobserved Choice Heterogeneity and the MTE Function

This figure displays the estimated MTE function from Brinch, Mogstad, and Wiswall (2017)

Francesco Ruggieri

Selection on the Gain

Selection on the gain: positive correlation between D and the return from choosing D = 1

Francesco Ruggieri

Selection on the Loss

Selection on the loss: negative correlation between D and the return from choosing D = 1

Unobserved Homogeneity

Unobserved homogeneity: zero correlation between D and the return from choosing D = 1

Francesco Ruggieri

Ø Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

③ Target Parameters as Weighted Averages of Marginal Treatment Effects

(1) Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Average Treatment Effect

- Target parameters can be expressed as weighted averages of marginal treatment effects
- Consider the Average Treatment Effect:

$$\begin{aligned} \text{ATE} &\equiv \mathbb{E}\left[Y(1) - Y(0)\right] = \mathbb{E}\left[\mathbb{E}\left[Y(1) - Y(0)|U\right]\right] \quad (\mathsf{LIE}) \\ &= \int_0^1 \mathbb{E}\left[Y(1) - Y(0)|U = u\right] du \quad (U \sim \mathcal{U}\left[0, 1\right]) \\ &= \int_0^1 \text{MTE}(u) du \\ &= \int_0^1 \text{MTE}(u) \times \omega_{\mathsf{ATE}} du \end{aligned}$$

where $\omega_{\rm ATE}=$ 1, i.e., the ${\rm ATE}$ is a simple average of marginal treatment effects

Average Treatment Effect on the Treated

Consider the Average Treatment Effect on the Treated:

$$\begin{aligned} \text{ATT} &\equiv \mathbb{E}\left[Y(1) - Y(0)|D = 1\right] = \mathbb{E}\left[\mathbb{E}\left[Y(1) - Y(0)|D = 1, p(Z)\right]|D = 1\right] \quad (\text{LIE}) \\ &= \int_{0}^{1} \mathbb{E}\left[Y(1) - Y(0)|D = 1, p(Z) = p\right] dF_{p(Z)|D=1}(p) \\ &= \int_{0}^{1} \mathbb{E}\left[Y(1) - Y(0)|U \le p(Z), p(Z) = p\right] dF_{p(Z)|D=1}(p) \quad (D = \mathbb{I}\left[U \le p(Z)\right]\right) \\ &= \int_{0}^{1} \mathbb{E}\left[Y(1) - Y(0)|U \le p\right] dF_{p(Z)|D=1}(p) \quad (U \perp Z) \\ &= \int_{0}^{1} \left[\frac{1}{p} \int_{0}^{p} \mathbb{E}\left[Y(1) - Y(0)|U = u\right] du\right] dF_{p(Z)|D=1}(p) \quad (U \sim \mathcal{U}\left[0,1\right]) \end{aligned}$$

Average Treatment Effect on the Treated

• In addition, Bayes' rule implies that

$$dF_{p(Z)|D=1} = \frac{\mathbb{P}(D=1|p(Z))}{\mathbb{P}(D=1)}dF_{p(Z)} = \frac{p(Z)}{\mathbb{P}(D=1)}dF_{p(Z)}$$

• Thus, the Average Treatment Effect on the Treated can be expressed as

$$\begin{aligned} \text{ATT} &= \int_{0}^{1} \left[\frac{1}{p} \int_{0}^{p} \mathbb{E}[Y(1) - Y(0) | U = u] \, du \right] \frac{p}{\mathbb{P}(D = 1)} dF_{p(Z)}(p) \\ &= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \left[\int_{0}^{p} \mathbb{E}[Y(1) - Y(0) | U = u] \, du \right] dF_{p(Z)}(p) \\ &= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \mathbb{E}[Y(1) - Y(0) | U = u] \left[\int_{0}^{1} \mathbb{I}[u \le p] \, dF_{p(Z)}(p) \right] \, du \quad (\text{Fubini's}) \\ &= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \mathbb{E}[Y(1) - Y(0) | U = u] \mathbb{P}(u \le p(Z)) \, du \quad (\mathbb{E}[\mathbb{I}[W]] = \mathbb{P}(W = 1)) \end{aligned}$$

Average Treatment Effect on the Untreated

• Rearranging terms:

$$ATT = \int_0^1 MTE(u) \times \frac{\mathbb{P}(u \le p(Z))}{\mathbb{P}(D=1)} du = \int_0^1 MTE(u) \times \omega_{ATT} du$$

• Analogously, the Average Treatment Effect on the Untreated can be expressed as

$$ATU = \int_0^1 MTE(u) \times \frac{\mathbb{P}(u > p(Z))}{\mathbb{P}(D = 0)} du = \int_0^1 MTE(u) \times \omega_{ATU} du$$

• Intuition: the ATT (ATU) oversamples marginal treatment effects for agents who are more (less) likely to self-select into treatment state D = 1

MTE Weights in a Parametric Normal Roy Model

This figure plots ATE, ATT, ATU weights from a parametric normal generalized Roy model

MTE Weights in Heckman and Vytlacil (2005)

Target Parameters as Weighted Averages of Marginal Treatment Effects

Let us combine information on the **MTE function** and **MTE weights** for target parameters:

- The MTE function is monotonically decreasing
 - Agents who self-select into treatment state D = 1 are more likely to gain from it
- The ATT (ATU) weighting function is monotonically decreasing (increasing)
 - The ATT oversamples MTEs for agents who are more likely to gain from D=1
 - The ATU undersamples MTEs for agents who are more likely to gain from D=1
- As a consequence, selection on the gain implies $\mathbf{ATT} > \mathbf{ATU}$

- **1** Framework for Marginal Treatment Effects
- Ø Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- I arget Parameters as Weighted Averages of Marginal Treatment Effects
- **@** Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

- The analysis so far has focused on the case in which the treatment is binary
- Vytlacil (2002) shows that, when $D \in \{0,1\}$,
 - The nonparametric Roy model implies the Imbens and Angrist model
 - The Imbens and Angrist model implies the nonparametric Roy model
- Consider the case in which treatment is multivalued
- With $D \in \mathbb{R}$, the two models are **not nested**:
 - The nonparametric Roy model does not imply the Imbens and Angrist model
 - The Imbens and Angrist model does not imply the nonparametric Roy model

- For simplicity, consider the case in which $D \in \{0, 1, 2\}$ and $Z \in \{0, 1\}$
- The Imbens and Angrist model assumes that
 - Either $D(1) \ge D(0)$ or $D(0) \ge D(1)$ with probability one
- The nonparametric Roy model assumes that
 - There exists a continuously distributed U and unknown functions ν_1 , ν_2 of Z such that

$$D = 1 imes \mathbb{I}\left[
u_1\left(Z
ight) < U \le
u_2\left(Z
ight)
ight] + 2 imes \mathbb{I}\left[U >
u_2\left(Z
ight)
ight]$$

where $u_1(z) <
u_2(z)$ for z = 0, 1

- Let us assume that the Imbens and Angrist selection model holds
- Without loss, the monotonicity assumption is $D(1) \ge D(0)$ with probability one
- The following **inequalities** are consistent with the Imbens and Angrist selection model:
 - (D(0) = 0, D(1) = 0) > 0
 - **2** $\mathbb{P}(D(0) = 1, D(1) = 1) > 0$
 - **3** $\mathbb{P}(D(0) = 2, D(1) = 2) > 0$
 - **4** $\mathbb{P}(D(0) = 0, D(1) = 1) > 0$
 - **5** $\mathbb{P}(D(0) = 1, D(1) = 2) > 0$
 - **6** $\mathbb{P}(D(0) = 0, D(1) = 2) > 0$

• **Potential treatments** can be expressed in terms of U and $\nu_1(Z), \nu_2(Z)$:

$$egin{aligned} D(0) &= 0 imes \mathbb{I} \left[U \leq
u_1(0)
ight] + 1 imes \mathbb{I} \left[
u_1(0) < U \leq
u_2(0)
ight] + 2 imes \mathbb{I} \left[
u_2(0) < U
ight] \ D(1) &= 0 imes \mathbb{I} \left[U \leq
u_1(1)
ight] + 1 imes \mathbb{I} \left[
u_1(1) < U \leq
u_2(1)
ight] + 2 imes \mathbb{I} \left[
u_2(1) < U
ight] \end{aligned}$$

• The following **if-and-only-if statements** are true:

$$egin{aligned} D(0) &= 0 & \Longleftrightarrow \ U \leq
u_1(0) & D(1) &= 0 & \Longleftrightarrow \ U \leq
u_1(1) \ D(0) &= 1 & \Leftrightarrow
u_1(0) < U \leq
u_2(0) & D(1) &= 1 & \Leftrightarrow
u_1(1) < U \leq
u_2(1) \ D(0) &= 2 & \longleftrightarrow \ U >
u_2(0) & D(1) &= 2 & \Longleftrightarrow \ U >
u_2(1) \end{aligned}$$

• The six positive probabilities consistent with the Imbens and Angrist model are:

1
$$\mathbb{P}(D(0) = 0, D(1) = 0) = \mathbb{P}(U \le \min\{\nu_1(0), \nu_1(1)\})$$

2 $\mathbb{P}(D(0) = 1, D(1) = 1) = \mathbb{P}(\max\{\nu_1(0), \nu_1(1)\} < U \le \min\{\nu_2(0), \nu_2(1)\})$

3
$$\mathbb{P}(D(0) = 2, D(1) = 2) = \mathbb{P}(U > \max\{\nu_2(0), \nu_2(1)\})$$

4
$$\mathbb{P}(D(0) = 0, D(1) = 1) = \mathbb{P}(\nu_1(1) < U \le \min\{\nu_1(0), \nu_2(1)\})$$

5
$$\mathbb{P}(D(0) = 1, D(1) = 2) = \mathbb{P}(\max\{\nu_1(0), \nu_2(1)\} < U \le \nu_2(0))$$

6
$$\mathbb{P}(D(0) = 0, D(1) = 2) = \mathbb{P}(\nu_2(1) < U \le \nu_1(0))$$

• If $\mathbb{P}(D(0) = 0, D(1) = 2) > 0$, then $\nu_1(0) > \nu_2(1)$. But then $\mathbb{P}(D(0) = 1, D(1) = 1) = 0$

- This contradicts the strict positivity of all six probabilities
- Thus, the Imbens and Angrist model does not imply the nonparametric Roy model

- Let us assume that the nonparametric Roy selection model holds
- Suppose the **unknown functions** $\nu_1(Z)$ and $\nu_2(Z)$ take the following values:

$$u_1(0) = 0.4 \qquad
u_2(0) = 0.6

u_1(1) = 0.3 \qquad
u_2(1) = 0.7$$

which meet the condition that $u_1(z) <
u_2(z)$ for z = 0, 1

• **Potential treatments** associated with this selection model are

$$egin{aligned} D(0) &= 0 imes \mathbb{I}\left[U \le 0.4
ight] + 1 imes \mathbb{I}\left[0.4 < U \le 0.6
ight] + 2 imes \mathbb{I}\left[0.6 < U
ight] \ D(1) &= 0 imes \mathbb{I}\left[U \le 0.3
ight] + 1 imes \mathbb{I}\left[0.3 < U \le 0.7
ight] + 2 imes \mathbb{I}\left[0.7 < U
ight] \end{aligned}$$

• Suppose that the unobservable latent variable is U = 0.35. Potential treatments are

$$\begin{aligned} \mathcal{D}(\mathbf{0}) &= 0 \times \mathbb{I}\left[0.35 \le 0.4\right] + 1 \times \mathbb{I}\left[0.4 < 0.35 \le 0.6\right] + 2 \times \mathbb{I}\left[0.6 < 0.35\right] = \mathbf{0} \\ \mathcal{D}(\mathbf{1}) &= 0 \times \mathbb{I}\left[0.35 \le 0.3\right] + 1 \times \mathbb{I}\left[0.3 < 0.35 \le 0.7\right] + 2 \times \mathbb{I}\left[0.7 < 0.35\right] = \mathbf{1} \end{aligned}$$

• Suppose that the unobservable latent variable is U = 0.65. Potential treatments are

$$\begin{aligned} \boldsymbol{D}(\mathbf{0}) &= 0 \times \mathbb{I}\left[0.65 \le 0.4\right] + 1 \times \mathbb{I}\left[0.4 < 0.65 \le 0.6\right] + 2 \times \mathbb{I}\left[0.6 < 0.65\right] = \mathbf{2} \\ \boldsymbol{D}(\mathbf{1}) &= 0 \times \mathbb{I}\left[0.65 \le 0.3\right] + 1 \times \mathbb{I}\left[0.3 < 0.65 \le 0.7\right] + 2 \times \mathbb{I}\left[0.7 < 0.65\right] = \mathbf{1} \end{aligned}$$

- D(1) = 1 > 0 = D(0) if U = 0.35, but D(1) = 1 < 2 = D(0) if U = 0.65
 - This contradicts the Imbens and Angrist monotonicity assumption
- Thus, the nonparametric Roy model **does not imply** the Imbens and Angrist model

Ø Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

I arget Parameters as Weighted Averages of Marginal Treatment Effects

(1) Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

- The Marginal Treatment Effect function is informative about the nature and extent of unobserved choice heterogeneity (selection on the gain/loss, unobserved homogeneity)
- Target parameters are weighted averages of marginal treatment effects
 - The ATT (ATU) oversamples (undersamples) MTEs for agents who more likely choose D=1
- Unlike the case in which the treatment is binary, the **nonparametric Roy** and **Imbens & Angrist** models are **not nested** when the **treatment** is **multivalued**