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Framework for Marginal Treatment Effects

Framework for Marginal Treatment Effects

• Y ∈ R is a scalar outcome of interest, D ∈ {0, 1} is a binary treatment

• D and Y are linked by potential outcomes Y (0),Y (1)

• X ∈ Rdx is a vector of predetermined, observable characteristics with support X
• Hereafter, all arguments will be made implicitly conditioning on X

• U ∈ R is an unobserved and continuously distributed latent variable

• Z ∈ R is a scalar instrumental variable with support Z
• Z satisfies the exogeneity assumption (Y (0),Y (1),U) ⊥⊥ Z
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Framework for Marginal Treatment Effects

Framework for Marginal Treatment Effects

• ν (·) is an unknown function of Z such that D = I [U ≤ ν(Z )]

• U, ν(Z) are additively separable (no interaction between policy shifters and unobservables)

• ν(Z)− U denotes the net utility from choosing treatment state D = 1

• Without loss, the selection equation can be normalized to D = I [U ≤ p(Z )]

• p(Z) ≡ P (D = 1|Z) is the propensity score

• U is a latent random variable uniformly distributed on [0, 1]

• MTE(u) ≡ E [Y (1)− Y (0)|U = u] is the Marginal Treatment Effect of D on Y

• MTE(u) is the Average Treatment Effect of D on Y for agents with unobservables U = u

• Plotting the Marginal Treatment Effect function is informative about choice heterogeneity
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Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

Unobserved Choice Heterogeneity and the MTE Function

This figure displays the estimated MTE function from Brinch, Mogstad, and Wiswall (2017)
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Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

Selection on the Gain

Selection on the gain: positive correlation between D and the return from choosing D = 1
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Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

Selection on the Loss

Selection on the loss: negative correlation between D and the return from choosing D = 1
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Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

Unobserved Homogeneity

Unobserved homogeneity: zero correlation between D and the return from choosing D = 1
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Target Parameters as Weighted Averages of Marginal Treatment Effects

Average Treatment Effect

• Target parameters can be expressed as weighted averages of marginal treatment effects

• Consider the Average Treatment Effect:

ATE ≡ E [Y (1)− Y (0)] = E [E [Y (1)− Y (0)|U]] (LIE)

=

∫ 1

0

E [Y (1)− Y (0)|U = u] du (U ∼ U [0, 1])

=

∫ 1

0

MTE(u)du

=

∫ 1

0

MTE(u)× ωATE du

where ωATE = 1, i.e., the ATE is a simple average of marginal treatment effects
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Target Parameters as Weighted Averages of Marginal Treatment Effects

Average Treatment Effect on the Treated

Consider the Average Treatment Effect on the Treated:

ATT ≡ E [Y (1)− Y (0)|D = 1] = E [E [Y (1)− Y (0)|D = 1, p(Z )] |D = 1] (LIE)

=

∫ 1

0

E [Y (1)− Y (0)|D = 1, p(Z ) = p] dFp(Z)|D=1(p)

=

∫ 1

0

E [Y (1)− Y (0)|U ≤ p(Z ), p(Z ) = p] dFp(Z)|D=1(p) (D = I [U ≤ p(Z )])

=

∫ 1

0

E [Y (1)− Y (0)|U ≤ p] dFp(Z)|D=1(p) (U ⊥⊥ Z )

=

∫ 1

0

[
1

p

∫ p

0

E [Y (1)− Y (0)|U = u] du

]
dFp(Z)|D=1(p) (U ∼ U [0, 1])
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Target Parameters as Weighted Averages of Marginal Treatment Effects

Average Treatment Effect on the Treated

• In addition, Bayes’ rule implies that

dFp(Z)|D=1 =
P (D = 1|p(Z ))

P (D = 1)
dFp(Z) =

p(Z )

P (D = 1)
dFp(Z)

• Thus, the Average Treatment Effect on the Treated can be expressed as

ATT =

∫ 1

0

[
1

p

∫ p

0

E [Y (1)− Y (0)|U = u] du

]
p

P (D = 1)
dFp(Z)(p)

=
1

P (D = 1)

∫ 1

0

[∫ p

0

E[Y (1)− Y (0)|U = u]du

]
dFp(Z)(p)

=
1

P (D = 1)

∫ 1

0

E[Y (1)− Y (0)|U = u]

[∫ 1

0

I [u ≤ p] dFp(Z)(p)

]
du (Fubini’s)

=
1

P (D = 1)

∫ 1

0

E[Y (1)− Y (0)|U = u]P (u ≤ p(Z )) du (E [I [W ]] = P (W = 1))
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Target Parameters as Weighted Averages of Marginal Treatment Effects

Average Treatment Effect on the Untreated

• Rearranging terms:

ATT =

∫ 1

0

MTE(u)× P (u ≤ p(Z ))

P (D = 1)
du =

∫ 1

0

MTE(u)× ωATT du

• Analogously, the Average Treatment Effect on the Untreated can be expressed as

ATU =

∫ 1

0

MTE(u)× P (u > p(Z ))

P (D = 0)
du =

∫ 1

0

MTE(u)× ωATU du

• Intuition: the ATT (ATU) oversamples marginal treatment effects for agents who are more
(less) likely to self-select into treatment state D = 1
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Target Parameters as Weighted Averages of Marginal Treatment Effects

MTE Weights in a Parametric Normal Roy Model

This figure plots ATE, ATT, ATU weights from a parametric normal generalized Roy model
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Target Parameters as Weighted Averages of Marginal Treatment Effects

MTE Weights in Heckman and Vytlacil (2005)

Source: Heckman and Vytlacil (2005)
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Target Parameters as Weighted Averages of Marginal Treatment Effects

Target Parameters as Weighted Averages of Marginal Treatment Effects

Let us combine information on the MTE function and MTE weights for target parameters:

• The MTE function is monotonically decreasing

• Agents who self-select into treatment state D = 1 are more likely to gain from it

• The ATT (ATU) weighting function is monotonically decreasing (increasing)

• The ATT oversamples MTEs for agents who are more likely to gain from D = 1

• The ATU undersamples MTEs for agents who are more likely to gain from D = 1

• As a consequence, selection on the gain implies ATT > ATU
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• The analysis so far has focused on the case in which the treatment is binary

• Vytlacil (2002) shows that, when D ∈ {0, 1},
• The nonparametric Roy model implies the Imbens and Angrist model

• The Imbens and Angrist model implies the nonparametric Roy model

• Consider the case in which treatment is multivalued

• With D ∈ R, the two models are not nested:

• The nonparametric Roy model does not imply the Imbens and Angrist model

• The Imbens and Angrist model does not imply the nonparametric Roy model
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• For simplicity, consider the case in which D ∈ {0, 1, 2} and Z ∈ {0, 1}

• The Imbens and Angrist model assumes that

• Either D(1) ≥ D(0) or D(0) ≥ D(1) with probability one

• The nonparametric Roy model assumes that

• There exists a continuously distributed U and unknown functions ν1, ν2 of Z such that

D = 1× I [ν1 (Z) < U ≤ ν2 (Z)] + 2× I [U > ν2 (Z)]

where ν1 (z) < ν2 (z) for z = 0, 1
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• Let us assume that the Imbens and Angrist selection model holds

• Without loss, the monotonicity assumption is D(1) ≥ D(0) with probability one

• The following inequalities are consistent with the Imbens and Angrist selection model:

1 P (D(0) = 0,D(1) = 0) > 0

2 P (D(0) = 1,D(1) = 1) > 0

3 P (D(0) = 2,D(1) = 2) > 0

4 P (D(0) = 0,D(1) = 1) > 0

5 P (D(0) = 1,D(1) = 2) > 0

6 P (D(0) = 0,D(1) = 2) > 0
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• Potential treatments can be expressed in terms of U and ν1(Z ), ν2(Z ):

D(0) = 0× I [U ≤ ν1(0)] + 1× I [ν1(0) < U ≤ ν2(0)] + 2× I [ν2(0) < U]

D(1) = 0× I [U ≤ ν1(1)] + 1× I [ν1(1) < U ≤ ν2(1)] + 2× I [ν2(1) < U]

• The following if-and-only-if statements are true:

D(0) = 0 ⇐⇒ U ≤ ν1(0) D(1) = 0 ⇐⇒ U ≤ ν1(1)

D(0) = 1 ⇐⇒ ν1(0) < U ≤ ν2(0) D(1) = 1 ⇐⇒ ν1(1) < U ≤ ν2(1)

D(0) = 2 ⇐⇒ U > ν2(0) D(1) = 2 ⇐⇒ U > ν2(1)
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• The six positive probabilities consistent with the Imbens and Angrist model are:

1 P (D(0) = 0,D(1) = 0) = P (U ≤ min{ν1(0), ν1(1)})

2 P (D(0) = 1,D(1) = 1) = P (max{ν1(0), ν1(1)} < U ≤ min{ν2(0), ν2(1)})

3 P (D(0) = 2,D(1) = 2) = P (U > max{ν2(0), ν2(1)})

4 P (D(0) = 0,D(1) = 1) = P (ν1(1) < U ≤ min{ν1(0), ν2(1)})

5 P (D(0) = 1,D(1) = 2) = P (max{ν1(0), ν2(1)} < U ≤ ν2(0))

6 P (D(0) = 0,D(1) = 2) = P (ν2(1) < U ≤ ν1(0))

• If P (D(0) = 0,D(1) = 2) > 0, then ν1(0) > ν2(1). But then P (D(0) = 1,D(1) = 1) = 0

• This contradicts the strict positivity of all six probabilities

• Thus, the Imbens and Angrist model does not imply the nonparametric Roy model

Francesco Ruggieri Marginal Treatment Effects: Theory November 4, 2020 19
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• Let us assume that the nonparametric Roy selection model holds

• Suppose the unknown functions ν1(Z ) and ν2(Z ) take the following values:

ν1(0) = 0.4 ν2(0) = 0.6

ν1(1) = 0.3 ν2(1) = 0.7

which meet the condition that ν1(z) < ν2(z) for z = 0, 1

• Potential treatments associated with this selection model are

D(0) = 0× I [U ≤ 0.4] + 1× I [0.4 < U ≤ 0.6] + 2× I [0.6 < U]

D(1) = 0× I [U ≤ 0.3] + 1× I [0.3 < U ≤ 0.7] + 2× I [0.7 < U]
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Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

• Suppose that the unobservable latent variable is U = 0.35. Potential treatments are

D(0) = 0× I [0.35 ≤ 0.4] + 1× I [0.4 < 0.35 ≤ 0.6] + 2× I [0.6 < 0.35] = 0

D(1) = 0× I [0.35 ≤ 0.3] + 1× I [0.3 < 0.35 ≤ 0.7] + 2× I [0.7 < 0.35] = 1

• Suppose that the unobservable latent variable is U = 0.65. Potential treatments are

D(0) = 0× I [0.65 ≤ 0.4] + 1× I [0.4 < 0.65 ≤ 0.6] + 2× I [0.6 < 0.65] = 2

D(1) = 0× I [0.65 ≤ 0.3] + 1× I [0.3 < 0.65 ≤ 0.7] + 2× I [0.7 < 0.65] = 1

• D(1) = 1 > 0 = D(0) if U = 0.35, but D(1) = 1 < 2 = D(0) if U = 0.65

• This contradicts the Imbens and Angrist monotonicity assumption

• Thus, the nonparametric Roy model does not imply the Imbens and Angrist model
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Summary

Summary

• The Marginal Treatment Effect function is informative about the nature and extent of
unobserved choice heterogeneity (selection on the gain/loss, unobserved homogeneity)

• Target parameters are weighted averages of marginal treatment effects

• The ATT (ATU) oversamples (undersamples) MTEs for agents who more likely choose D = 1

• Unlike the case in which the treatment is binary, the nonparametric Roy and Imbens &
Angrist models are not nested when the treatment is multivalued
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