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Framework for Instrumental Variables

® Y c R is an outcome of interest

X € R% is a vector of observed determinants of Y that may be partitioned into

® D e R%, a vector of observed determinants of interest

® W e R%, a vector of control variables that typically include a deterministic constant

® (J € R encompasses all of the unobserved determinants of Y

A linear all-causes model of the observed and unobserved determinants of the outcome:

Y=XB+U=Da+Wny+U
® Observed and unobserved determinants of Y are systematically related: E [XU] # 0,
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Framework for Instrumental Variables

Because U has a causal interpretation and E [XU] # 04,:

® The orthogonality condition imposed by linear regression, E [XU] = 0, , does not logically
match the systematic relationship between observed and unobserved determinants of Y

® Solution: consider a vector of instrumental variables, Z € R%, such that E[ZU] = 04,
To identify the vector of causal parameters (3, make the following assumptions:

@ Exclusion: Z is not a direct determinant of Y, i.e., Y = X'+ Z'n+ U is such that n = 0g,
® Exogeneity: Z and U are orthogonal, i.e., E[ZU] = 0g,

© Relevance: E[ZX] has full rank
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Framework for Instrumental Variables

Under these assumptions, the orthogonality between Z and U can be restated as
E[ZU] =04, <= E[Z(Y - X'B)] =04, < E[ZY]=E[ZX']3
@ if d, = dy, E[ZX’] is an invertible matrix, and the Instrumental Variables estimand is
By =E[2X] TE[2Y]
@ if d, > dy, pre-multiply E [ZX’] by a dx X d, matrix of deterministic constants c, so that
By = E[cZX'| ' E[cZY]
If ¢ is chosen to be the transpose of the matrix of first-stage regression coefficients,
Brsis = E[r'ZX'| ' E[r' ZY]

. . -1
is the Two-Stage Least Squares estimand, where 1 = E[ZZ']7" E [ZX’]
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The Two-Sample Two-Stage Least Squares Estimator

® Consider {Y;, X;, Z;};_,, a sample of i.i.d. draws from the joint distribution of (Y, X, Z)

® The Two-Stage Least Squares estimator of S is the sample analog of frsis:
1 AR
) _ A’ / A’
Brsis = <n§_; i Z,-X,-> (n ;n Z,-Y,->
® The Weak Law of Large Numbers and the Continuous Mapping Theorem imply that ETSLS LN 8
® |n addition, by the Central Limit Theorem and the Continuous Mapping Theorem,
Jn (ETSLS - 5) LYY, (0, E[x'ZX'| ! 'Var [ZU] 7E [xz'w]*l)

® The Two-Stage Least Squares estimator is consistent for 5 and asymptotically normal

Francesco Ruggieri Instrumental Variables October 28, 2020



The Two-Sample Two-Stage Least Squares Estimator

® Suppose a single sample from the joint distribution of (Y, X, Z) were not available

® |n other words, no sample contains joint information on Y, X, and Z

* However, two independent samples are available: { Y/, ZA}™ and {XF ZF}™,

® |Importantly, both samples include information on the vector of instrumental variables

® A classic example of this setting is Angrist and Krueger (1992)
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Angrist and Krueger (1992)

Goal: estimate the effect of age at school entry on educational attainment

® Setting: states allow children to enroll in primary school if their age is 6 at given date cutoffs

In addition, students are allowed to leave school as soon as they turn 16
® Assumption: the share of students dropping out at 16 is fixed and independent of birth date
® |mplication: students born earlier in the year attain, on average, less education

® Angrist and Krueger (1992) instruments entry age with quarter-of-birth indicators

Francesco Ruggieri Instrumental Variables October 28, 2020



Angrist and Krueger (1992)

® A dataset containing age of school entry (X) and years of schooling (Y) is not available

® Angrist and Krueger (1992) uses two distinct samples:

@ The 1960 Census to compute age at entry (and quarter of birth)

® The 1980 Census to back out years of completed schooling and (quarter of birth)

® The authors propose a Two-Sample Two-Stage Least Squares estimator:

B 1 - A/ 60 y//60 - 1 - A/ 80,80
B STSLS = — M Z,- X,- — M Z,- Y,
TSTSL 6o ?:1 60 8o ?11 60
where
N 1 neo -1 1 )
|—|60 = § Z’-(SOZ,-/6O E Zi60Xi/60

n
i—1 60 3=y
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Angrist and Krueger (1992)

® More in general, given the two samples A and B defined above, consider
1 ng -1 1 na
Brstsis = (nanlBZlBXIIB> <,~,AZ|—|%Z’AY’A>
i=1 i=1

® If both samples contain independent and identically distributed random variables,
Brstsis > frsis = E[r'ZX'| " E[r'ZY]

applying the Weak Law of Large Numbers and the Continuous Mapping Theorem
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Angrist and Krueger (1992)

e Alternative consistent estimators can be constructed exploiting these two samples:

1 ng -1 1 na

¢! 5/ 7B yIB 8/ 7AVA

B‘E’S)TSLS =\ Z N Z7 X/ — Z Mg ZY;
B na
1 & ~ N1

(2 Shze oz emt)) (LS muzeve)
i=1 i=1

1 ng N N -1 1 na N
— Y NyzBzEn — ) NpzAYA
<nB ; B<i i B na ; B%i i

® Replacing Z8 with Z# in the first matrix yields the alternative estimator for 3,
B(2) 1 & A/ 7A71AQ - 1 & A/ 7AVA
Brsrsis = HZHBZi Z"Mp azﬂszi Y
i-1 i—1
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Angrist and Krueger (1992)

® The matrix of first-stage regression coefficients can be estimated using sample A too:
1 na -1 1 ng
Map= | =N " 7A7A N 7Bx/B
® Two additional consistent estimators for 3 are therefore

-1

~3 1 B~ ~ 1 A~

Bros = (= 3o Muzp 20 (L35t
i=1 i=1

—1
1 &~ ~ 1 &
(nA > n/ABZiAZi/AnAB) <I7A > Mzt YiA>
i=1 i=1

1G]
Brstsis

® Though consistent, these estimators are numerically distinct in finite samples
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Angrist and Krueger (1992)

Moreover, if d, = dy, two-sample IV and two-sample TSLS are not always equivalent:
1 .
BiYreis = ( Z Y ZAZIA”B) (nlA Z ﬁjBZ,-AY,-A>
-1 - ,,A
=nz! ( ZZAZ’A> ety (nlA sz‘yf‘)
i=1
= <1 ZZBX’B> B (1 isz.’B> (1 izf‘z!*‘) B (1 izf‘yﬁ)
n ng = mi mi

Fldy x dy

-1
N 1 ng 1 na
Brgy=| — Y ZzBx/B =N ZAyA

7£ TSIV <nB§ i i > <nA’.Z=; i i
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Angrist and Krueger (1992)

® Angrist and Krueger (1992) makes two additional assumptions:

@ Moments estimated from A are independent from moments estimated from B
@ Let ng [na] denote ng as a function of na. Then the ratio na and ng is constant:
na
lim —~— =keR

np—oo N [nA]

® Under these assumptions and focusing, for simplicity, on the two-sample IV estimator:

1 & 1 &
— Y ZAYA - = ZPXEp
na ) np

i=1
1 & n n
N ZAYA_R[zZX A ZBX/B Brizx
MZ;, M -E[2X]8 - n3< WBZ B=\/m.El ]ﬂ)
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Angrist and Krueger (1992)

® Exploiting the two previous assumptions, \/na can be used as a normalization:

V/nag (B) = /na (,;ZZIAYI'A _E[ZX’]ﬁ) — v/ kng (,;ZZiBX;/Bﬂ—E[ZX']ﬁ

i=1 i=1
9 N (0, pa + kwg) = N (0, )

® Thus, the two-sample Instrumental Variables estimator is asymptotically normal

® Indeed, §T5|V — (B is proportional to g () and Slutsky’'s Theorem implies the result
® The authors propose a TSIV estimator that uses ® as a GMM weighting matrix

® Inoue and Solon (2010) shows that estimators such as /8\1('2S)TSLS are more efficient
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Framework for Instrumental Variables with Heterogeneity

® Y € R is an outcome of interest, D € {0,1} is a binary treatment

D and Y are linked by potential outcomes Y(0) and Y(1)

® Agents choose whether to sort into the treated or untreated arm

This self-selection is thought to be based on unobserved determinants of the outcome:

Y(0), Y(1) L D
® Suppose this self-selection could be shifted by an instrumental variable Z € {0,1}

® Z and D are linked by potential treatments D(0) and D(1)
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Framework for Instrumental Variables with Heterogeneity

® Goal: estimate some feature of the distribution of the random variable Y (1) — Y(0)

® The effect of D on Y is heterogeneous across agents

® Unobservables induce agents to choose D = 0 or D =1, so Z must satisfy four assumptions:
® Exclusion: Y(d,z) = Y(d) Vd,z
® Exogeneity: (Y(0), Y(1),D(0),D(1)) L Z
© Relevance: Cov [D, Z] # 0. If exogeneity holds, relevance implies P(D(0) = D(1)) < 1

O Monotonicity: P(D(1) > D(0)) =1 or P(D(0) > D(1)) =1

® Under these assumptions, the IV estimand identifies the Local Average Treatment Effect:

_ Cov[Z,Y] E[Y|Z=1]-E[Y|Z=0(]

bv = Cov[Z,D]  E[D|Z=1]-E[D|Z =0]

=E[Y(1) - Y(0)D(1) > D(0)]
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A LATE Extension: Multiple Unordered Treatments

® Extend the LATE framework to the case in which there exist multiple unordered treatments

® Treatment states cannot be logically ranked

® Examples are discrete choice problems of field of study, occupation, location, etc.
® For simplicity, let us focus on the case in which D is trinary, i.e., D € {0,1,2}

® This setting implies three treatment state indicators:

® Suppose there exists a trinary instrument, Z € {0, 1,2}, that shifts self-selection into D

® This setting again implies three instrument indicators:
Zo=1[Z2=0] z=1[Z=1 Z=1[Z=2|
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Kirkeboen, Leuven, and Mogstad (2016)

® Kirkeboen, Leuven, and Mogstad (2016) studies the effect of major choice on earnings

® A standard exclusion restriction implies three potential outcome random variables
® Each indicator D; is associated with two potential treatment states
® Observed and potential outcomes are linked as follows:

Y =Y(0)+ (Y(1) - Y(0)) Dy + (Y(2) — Y(0)) D,

D; = D;(0) + (D(1) — Dj(0)) Zi + (D(2) — D(0)) Z2  for j € {1,2}
[ ]

The Imbens and Angrist (1994) monotonicity assumption in this setting is
Dl(l) Z Dl(O) and D2(2) Z DQ(O)

Being assigned instrument Z = j does not make it less likely to choose major D = j
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Kirkeboen, Leuven, and Mogstad (2016)

® A raw comparison of earnings by major is contaminated by selection bias:

E[Y|D =2] —~E[Y|D = 0] = E[Y(2)|D = 2] —- E[Y(0)|D = 0]
= E[Y(2) - Y(0)|D = 2] + E[Y(0)|D = 2] — E[Y(0)|D = 0]

payoff selection bias

® Even if one could eliminate selection bias, the “payoff” would still be hard to interpret:

E[Y(2) = Y(0)|D=2] =E [Y(2) — Y(0)|D =2,D), =0] x P(D;, = 0|D = 2)
+E[Y(2)—-Y(0)|D=2,Dp=1] xP(D;p =1|D =2)

where D/, denotes one’s next-best alternative

® Absent selection bias, the OLS estimand is still a weighted average of “different” payoffs
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Kirkeboen, Leuven, and Mogstad (2016)

® As usual, the issue of selection bias can be addressed with instrumental variables
® |s |V sufficient to identify parameters with a clear economic interpretation?

® Consider the linear all-causes model

Y = 6o+ BiDy+ BoDa+ U with E[D U] #0 and E[DyU] #0

® Re-express U in terms of potential outcomes and potential treatments:

+(Y(1) = Y(0) = 81) (D1(0) + (D1(1) — D1(0)) Z1 + (D1(2) — D1(0)) Z2)
+(Y(2) = Y(0) = 82) (D2(0) + (D2(1) — D2(0)) Z1 + (D2(2) — D1(0)) 22)
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Kirkeboen, Leuven, and Mogstad (2016)

® Define the payoffs Al = Y(1) — Y(0) and A% = Y(2) — Y(0)

® Using this expression for U, the IV orthogonality conditions can be written as

E[Z1U] = E [(A' = B1) (D1(1) — D1(0)) + (A% = B2) (D2(1) — D2(0))] =
E[ZU] =E[(A! = B1) (D1(2) — D1(0)) + (A2 — B2) (D2(2) — D2(0))] =

o O

® Solving this system of equations for 81 and (3, yields two linear combinations of
e A'= Y(1) — Y(0), the payoff of major 1 relative to major 0
® A% = Y(2) — Y(0), the payoff of major 2 relative to major 0

e A2 - Al = Y(2) — Y(1), the payoff of major 2 relative to major 1

® Thus, IV identifies weighted averages of payoffs to choosing different fields
Instrumental Variables October 28, 2020
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Kirkeboen, Leuven, and Mogstad (2016)

For IV to identify interpretable parameters of interest, additional assumptions are needed:

@ Constant effects, i.e., payoffs to major choice are homogeneous across agents:

@® Restricting preferences to D>(0) = D,(1) and D;1(0) = D4(2):
B =E[AND(1) - Di(0) = 1] B2 = E[A%Da(2) - Da(0) = 1]
© Irrelevance and Next-Best Alternative, i.e., Di(1) = D;1(0) =0 = D»(1) = D»(0) and
B =E[A'Dy(1) — D1(0) = 1, D>(0) = 0] B> = E [A%D5(2) — D5(0) = 1, D1(0) = 0]

Pair this assumption with info on next-best alternatives to identify field-specific LATEs.
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Kline and Walters (2016)

® Kline and Walters (2016) studies patterns of substitution across public assistance programs

® Setting: the Head Start Impact Study, a 2002-2006 national longitudinal study

Each Head Start applicant participates in one of three possible treatments, D € {h, c,n}

® h, c,n denote Head Start, other pre-school programs, and home care, respectively

® A binary instrument Z € {0, 1} indicates receipt of a Head Start offer

The authors impose a theoretical restriction on substitution patterns:
D(1) # D(0) = D(1)=h
Receiving a Head Start offer does not induce any agent to switch between n and ¢
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Kline and Walters (2016)

This restriction implies that Head Start applicants can be partioned into five groups:

@ n-compliers, D(1) = h, D(0) = n, switch from home care to Head Start

@® c-compliers, D(1) = h, D(0) = ¢, switch from other programs to Head Start

© n-never takers, D(1) = D(0) = n, never attend Head Start and choose home care

O c-never takers, D(1) = D(0) = ¢, never attend Head Start and choose other programs

@ h-always takers, D(1) = D(0) = h, manage to enroll in Head Start in any case
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Kline and Walters (2016)

e Consider the linear all-causes model Y = a + 35S + U with E[SU] # 0

® S=1if D= h, i.e., an applicant participates in the Head Start program

® The Instrumental Variables estimand of 3 is

_ Cov[Z,Y] E[Y|Z=1]-E[Y|Z=0]
~ Cov[Z,S] E[S|Z=1]-E[S|Z=0]
B E[Y|Z=1]-E[Y|Z =0]
 E[I[D=h]|Z=1]—-E[I[D = h]|Z = 0]
=E[Y(h) - Y(D(0))|D(1) = h, D(0) # h]
= LATE,

Biv

® LATE, is the average effect of Head Start among compliers, where compliers

® Have different counterfactual choices, i.e., include both n-compliers and c-compliers
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Summary

Summary

® If a single sample containing draws from (Y, X, Z) is not available, the Two-Sample
Two-Stage Least Squares estimator is still consistent and asymptotically normal

® An important extension of the LATE framework is multiple unordered treatments:
® Kirkeboen, Leuven, and Mogstad (2016) shows that Instrumental Variables may eliminate selection

bias, but does not necessarily identify economically interpretable parameters

® Kline and Walters (2016) shows how theoretically restricting agents’ behavior may allow one to
identify a salient Local Average Treatment Effect when agents face a discrete choice
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