Instrumental Variables

ECON 31720 Applied Microeconometrics

Francesco Ruggieri

The University of Chicago
October 28, 2020
(1) Framework for Instrumental Variables
(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

(1) Framework for Instrumental Variables

(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen Leuven and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Framework for Instrumental Variables

- $Y \in \mathbb{R}$ is an outcome of interest
- $X \in \mathbb{R}^{d_{x}}$ is a vector of observed determinants of Y that may be partitioned into
- $D \in \mathbb{R}^{d_{d}}$, a vector of observed determinants of interest
- $W \in \mathbb{R}^{d_{w}}$, a vector of control variables that typically include a deterministic constant
- $U \in \mathbb{R}$ encompasses all of the unobserved determinants of Y
- A linear all-causes model of the observed and unobserved determinants of the outcome:

$$
Y=X^{\prime} \beta+U=D^{\prime} \alpha+W^{\prime} \gamma+U
$$

- Observed and unobserved determinants of Y are systematically related: $\mathbb{E}[X U] \neq 0_{d_{x}}$

Framework for Instrumental Variables

Because U has a causal interpretation and $\mathbb{E}[X U] \neq 0_{d_{x}}$:

- The orthogonality condition imposed by linear regression, $\mathbb{E}[X U]=0_{d_{x}}$, does not logically match the systematic relationship between observed and unobserved determinants of Y
- Solution: consider a vector of instrumental variables, $Z \in \mathbb{R}^{d_{z}}$, such that $\mathbb{E}[Z U]=0_{d_{z}}$

To identify the vector of causal parameters β, make the following assumptions:
(1) Exclusion: Z is not a direct determinant of Y, i.e., $Y=X^{\prime} \beta+Z^{\prime} \eta+U$ is such that $\eta=0_{d_{z}}$
(2) Exogeneity: Z and U are orthogonal, i.e., $\mathbb{E}[Z U]=0_{d_{z}}$
(3) Relevance: $\mathbb{E}\left[Z X^{\prime}\right]$ has full rank

Framework for Instrumental Variables

Under these assumptions, the orthogonality between Z and U can be restated as

$$
\mathbb{E}[Z U]=0_{d_{z}} \Longleftrightarrow \mathbb{E}\left[Z\left(Y-X^{\prime} \beta\right)\right]=0_{d_{z}} \Longleftrightarrow \mathbb{E}[Z Y]=\mathbb{E}\left[Z X^{\prime}\right] \beta
$$

(1) if $d_{z}=d_{x}, \mathbb{E}\left[Z X^{\prime}\right]$ is an invertible matrix, and the Instrumental Variables estimand is

$$
\beta_{\mathrm{IV}} \equiv \mathbb{E}\left[Z X^{\prime}\right]^{-1} \mathbb{E}[Z Y]
$$

(2) if $d_{z}>d_{x}$, pre-multiply $\mathbb{E}\left[Z X^{\prime}\right]$ by a $d_{x} \times d_{z}$ matrix of deterministic constants c, so that

$$
\beta_{\mathrm{IV}} \equiv \mathbb{E}\left[c Z X^{\prime}\right]^{-1} \mathbb{E}[c Z Y]
$$

If c is chosen to be the transpose of the matrix of first-stage regression coefficients,

$$
\beta_{\mathrm{TSLS}} \equiv \mathbb{E}\left[\pi^{\prime} Z X^{\prime}\right]^{-1} \mathbb{E}\left[\pi^{\prime} Z Y\right]
$$

is the Two-Stage Least Squares estimand, where $\pi \equiv \mathbb{E}\left[Z Z^{\prime}\right]^{-1} \mathbb{E}\left[Z X^{\prime}\right]$

(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

The Two-Sample Two-Stage Least Squares Estimator

- Consider $\left\{Y_{i}, X_{i}, Z_{i}\right\}_{i=1}^{n}$, a sample of i.i.d. draws from the joint distribution of (Y, X, Z)
- The Two-Stage Least Squares estimator of β is the sample analog of $\beta_{\text {TSLS }}$:

$$
\widehat{B}_{\mathrm{TSLS}} \equiv\left(\frac{1}{n} \sum_{i=1}^{n} \widehat{\Pi}^{\prime} Z_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \widehat{\Pi}^{\prime} Z_{i} Y_{i}\right)
$$

- The Weak Law of Large Numbers and the Continuous Mapping Theorem imply that $\widehat{B}_{\text {TSLS }} \xrightarrow{p} \beta$
- In addition, by the Central Limit Theorem and the Continuous Mapping Theorem,

$$
\sqrt{n}\left(\widehat{B}_{\mathrm{TSLS}}-\beta\right) \xrightarrow{d} \mathcal{N}\left(0, \mathbb{E}\left[\pi^{\prime} Z X^{\prime}\right]^{-1} \pi^{\prime} \operatorname{Var}[Z U] \pi \mathbb{E}\left[X Z^{\prime} \pi\right]^{-1}\right)
$$

- The Two-Stage Least Squares estimator is consistent for β and asymptotically normal

The Two-Sample Two-Stage Least Squares Estimator

- Suppose a single sample from the joint distribution of (Y, X, Z) were not available
- In other words, no sample contains joint information on Y, X, and Z
- However, two independent samples are available: $\left\{Y_{i}^{A}, Z_{i}^{A}\right\}_{i=1}^{n_{A}}$ and $\left\{X_{i}^{B}, Z_{i}^{B}\right\}_{i=1}^{n_{B}}$
- Importantly, both samples include information on the vector of instrumental variables
- A classic example of this setting is Angrist and Krueger (1992)
(1) Framework for Instrumental Variables
(2) The Two-Sample Two-Stage Least Squares Estimator
- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Angrist and Krueger (1992)

- Goal: estimate the effect of age at school entry on educational attainment
- Setting: states allow children to enroll in primary school if their age is 6 at given date cutoffs
- In addition, students are allowed to leave school as soon as they turn 16
- Assumption: the share of students dropping out at 16 is fixed and independent of birth date
- Implication: students born earlier in the year attain, on average, less education
- Angrist and Krueger (1992) instruments entry age with quarter-of-birth indicators

Angrist and Krueger (1992)

- A dataset containing age of school entry (X) and years of schooling (Y) is not available
- Angrist and Krueger (1992) uses two distinct samples:
(1) The $\mathbf{1 9 6 0}$ Census to compute age at entry (and quarter of birth)
(2) The $\mathbf{1 9 8 0}$ Census to back out years of completed schooling and (quarter of birth)
- The authors propose a Two-Sample Two-Stage Least Squares estimator:

$$
\widehat{B}_{\text {TSTSLS }} \equiv\left(\frac{1}{n_{60}} \sum_{i=1}^{n_{60}} \widehat{\Pi}_{60}^{\prime} Z_{i}^{60} X_{i}^{\prime 60}\right)^{-1}\left(\frac{1}{n_{80}} \sum_{i=1}^{n_{80}} \widehat{\Pi}_{60}^{\prime} Z_{i}^{80} Y_{i}^{80}\right)
$$

where

$$
\widehat{\Pi}_{60} \equiv\left(\frac{1}{n_{60}} \sum_{i=1}^{n_{60}} Z_{i}^{60} Z_{i}^{\prime 60}\right)^{-1}\left(\frac{1}{n_{60}} \sum_{i=1}^{n_{60}} Z_{i}^{60} X_{i}^{\prime 60}\right)
$$

Angrist and Krueger (1992)

- More in general, given the two samples A and B defined above, consider

$$
\widehat{B}_{\mathrm{TSTSLS}} \equiv\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{B} X_{i}^{\prime B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right)
$$

- If both samples contain independent and identically distributed random variables,

$$
\widehat{B}_{\mathrm{TSTSLS}} \xrightarrow{p} \beta_{\mathrm{TSLS}} \equiv \mathbb{E}\left[\pi^{\prime} Z X^{\prime}\right]^{-1} \mathbb{E}\left[\pi^{\prime} Z Y\right]
$$

applying the Weak Law of Large Numbers and the Continuous Mapping Theorem

Angrist and Krueger (1992)

- Alternative consistent estimators can be constructed exploiting these two samples:

$$
\begin{aligned}
\widehat{B}_{\mathrm{TSTSLS}}^{(1)} & =\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{B} X_{i}^{\prime B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right) \\
& =\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{B}\left(\widehat{\Pi}_{B}^{\prime} Z_{i}^{B}+R_{i}^{B}\right)^{\prime}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right) \\
& =\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{B} Z_{i}^{\prime B} \widehat{\Pi}_{B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right)
\end{aligned}
$$

- Replacing Z^{B} with Z^{A} in the first matrix yields the alternative estimator for β,

$$
\widehat{B}_{\mathrm{TSTSLS}}^{(2)} \equiv\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Z_{i}^{\prime A} \widehat{\Pi}_{B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right)
$$

Angrist and Krueger (1992)

- The matrix of first-stage regression coefficients can be estimated using sample A too:

$$
\widehat{\Pi}_{A B}=\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Z_{i}^{\prime A}\right)^{-1}\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B} X_{i}^{\prime B}\right)
$$

- Two additional consistent estimators for β are therefore

$$
\begin{aligned}
& \widehat{B}_{\mathrm{TSTSLS}}^{(3)} \equiv\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} \hat{\Pi}_{A B}^{\prime} Z_{i}^{B} Z_{i}^{\prime B} \widehat{\Pi}_{A B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \hat{\Pi}_{A B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right) \\
& \widehat{B}_{\mathrm{TSTSLS}}^{(4)} \equiv\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \hat{\Pi}_{A B}^{\prime} Z_{i}^{A} Z_{i}^{\prime A} \widehat{\Pi}_{A B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{A B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right)
\end{aligned}
$$

- Though consistent, these estimators are numerically distinct in finite samples

Angrist and Krueger (1992)

Moreover, if $d_{z}=d_{x}$, two-sample IV and two-sample TSLS are not always equivalent:

$$
\begin{aligned}
\widehat{B}_{\mathrm{TSTSLS}}^{(2)} & \equiv\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Z_{i}^{\prime A} \widehat{\Pi}_{B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} \widehat{\Pi}_{B}^{\prime} Z_{i}^{A} Y_{i}^{A}\right) \\
& =\widehat{\Pi}_{B}^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Z_{i}^{\prime A}\right)^{-1} \widehat{\Pi}_{B}^{\prime-1} \widehat{\Pi}_{B}^{\prime}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}\right) \\
& =(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B}{X_{i}^{\prime B}}^{-1} \underbrace{\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B} Z_{i}^{\prime B}\right)\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Z_{i}^{\prime A}\right)^{-1}}_{\neq i_{d_{z} \times d_{z}}}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}\right) \\
& \neq \widehat{B}_{\mathrm{TSIV}} \equiv\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B}{\left.X_{i}^{\prime B}\right)^{-1}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}\right)}^{l}\right.
\end{aligned}
$$

Angrist and Krueger (1992)

- Angrist and Krueger (1992) makes two additional assumptions:
(1) Moments estimated from A are independent from moments estimated from B
(2) Let $n_{B}\left[n_{A}\right]$ denote n_{B} as a function of n_{A}. Then the ratio n_{A} and n_{B} is constant:

$$
\lim _{n_{A} \rightarrow \infty} \frac{n_{A}}{n_{B}\left[n_{A}\right]}=k \in \mathbb{R}
$$

- Under these assumptions and focusing, for simplicity, on the two-sample IV estimator:

$$
\begin{aligned}
g(\beta) & \equiv \frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}-\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B} X_{i}^{\prime B} \beta \\
& =\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}-\mathbb{E}\left[Z X^{\prime}\right] \beta-\sqrt{\frac{n_{A}}{n_{B}}}\left(\frac{1}{\sqrt{n_{A} n_{B}}} \sum_{i=1}^{n_{B}} Z_{i}^{B} X_{i}^{\prime B} \beta-\sqrt{\frac{n_{B}}{n_{A}}} \mathbb{E}\left[Z X^{\prime}\right] \beta\right)
\end{aligned}
$$

Angrist and Krueger (1992)

- Exploiting the two previous assumptions, $\sqrt{n_{A}}$ can be used as a normalization:

$$
\begin{aligned}
\sqrt{n_{A}} g(\beta) & =\sqrt{n_{A}}\left(\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} Z_{i}^{A} Y_{i}^{A}-\mathbb{E}\left[Z X^{\prime}\right] \beta\right)-\sqrt{k n_{B}}\left(\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} Z_{i}^{B} X_{i}^{\prime B} \beta-\mathbb{E}\left[Z X^{\prime}\right] \beta\right) \\
& \xrightarrow{d} \mathcal{N}\left(0, \phi_{A}+k \omega_{B}\right)=\mathcal{N}(0, \Phi)
\end{aligned}
$$

- Thus, the two-sample Instrumental Variables estimator is asymptotically normal
- Indeed, $\widehat{B}_{\text {TSIV }}-\beta$ is proportional to $g(\beta)$ and Slutsky's Theorem implies the result
- The authors propose a TSIV estimator that uses Φ as a GMM weighting matrix
- Inoue and Solon (2010) shows that estimators such as $\hat{B}_{\text {TSTSLS }}^{(2)}$ are more efficient
(2) The Two-Sample Two-Stage Least Squares Estimator
- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Framework for Instrumental Variables with Heterogeneity

- $Y \in \mathbb{R}$ is an outcome of interest, $D \in\{0,1\}$ is a binary treatment
- D and Y are linked by potential outcomes $Y(0)$ and $Y(1)$
- Agents choose whether to sort into the treated or untreated arm
- This self-selection is thought to be based on unobserved determinants of the outcome:

$$
Y(0), Y(1) \not \Perp D
$$

- Suppose this self-selection could be shifted by an instrumental variable $Z \in\{0,1\}$
- Z and D are linked by potential treatments $D(0)$ and $D(1)$

Framework for Instrumental Variables with Heterogeneity

- Goal: estimate some feature of the distribution of the random variable $Y(1)-Y(0)$
- The effect of D on Y is heterogeneous across agents
- Unobservables induce agents to choose $D=0$ or $D=1$, so Z must satisfy four assumptions:
(1) Exclusion: $Y(d, z)=Y(d) \forall d, z$
(2) Exogeneity: $(Y(0), Y(1), D(0), D(1)) \Perp Z$
(3) Relevance: $\operatorname{Cov}[D, Z] \neq 0$. If exogeneity holds, relevance implies $\mathbb{P}(D(0)=D(1))<1$
(4) Monotonicity: $\mathbb{P}(D(1) \geq D(0))=1$ or $\mathbb{P}(D(0) \geq D(1))=1$
- Under these assumptions, the IV estimand identifies the Local Average Treatment Effect:

$$
\beta_{\mathrm{IV}} \equiv \frac{\operatorname{Cov}[Z, Y]}{\operatorname{Cov}[Z, D]}=\frac{\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]}{\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]}=\mathbb{E}[Y(1)-Y(0) \mid D(1)>D(0)]
$$

(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

A LATE Extension: Multiple Unordered Treatments

- Extend the LATE framework to the case in which there exist multiple unordered treatments
- Treatment states cannot be logically ranked
- Examples are discrete choice problems of field of study, occupation, location, etc.
- For simplicity, let us focus on the case in which D is trinary, i.e., $D \in\{0,1,2\}$
- This setting implies three treatment state indicators:

$$
D_{0} \equiv \mathbb{I}[D=0] \quad D_{1} \equiv \mathbb{I}[D=1] \quad D_{2} \equiv \mathbb{I}[D=2]
$$

- Suppose there exists a trinary instrument, $Z \in\{0,1,2\}$, that shifts self-selection into D
- This setting again implies three instrument indicators:

$$
Z_{0} \equiv \mathbb{I}[Z=0] \quad Z_{1} \equiv \mathbb{I}[Z=1] \quad Z_{2} \equiv \mathbb{I}[Z=2]
$$

(1) Framework for Instrumental Variables
(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Kirkeboen, Leuven, and Mogstad (2016)

- Kirkeboen, Leuven, and Mogstad (2016) studies the effect of major choice on earnings
- A standard exclusion restriction implies three potential outcome random variables
- Each indicator D_{j} is associated with two potential treatment states
- Observed and potential outcomes are linked as follows:

$$
\begin{aligned}
Y & =Y(0)+(Y(1)-Y(0)) D_{1}+(Y(2)-Y(0)) D_{2} \\
D_{j} & =D_{j}(0)+\left(D_{j}(1)-D_{j}(0)\right) Z_{1}+\left(D_{j}(2)-D_{j}(0)\right) Z_{2} \quad \text { for } j \in\{1,2\}
\end{aligned}
$$

- The Imbens and Angrist (1994) monotonicity assumption in this setting is

$$
D_{1}(1) \geq D_{1}(0) \quad \text { and } \quad D_{2}(2) \geq D_{2}(0)
$$

Being assigned instrument $Z=j$ does not make it less likely to choose major $D=j$

Kirkeboen, Leuven, and Mogstad (2016)

- A raw comparison of earnings by major is contaminated by selection bias:

$$
\begin{aligned}
\mathbb{E}[Y \mid D=2]-\mathbb{E}[Y \mid D=0] & =\mathbb{E}[Y(2) \mid D=2]-\mathbb{E}[Y(0) \mid D=0] \\
& =\underbrace{\mathbb{E}[Y(2)-Y(0) \mid D=2]}_{\text {payoff }}+\underbrace{\mathbb{E}[Y(0) \mid D=2]-\mathbb{E}[Y(0) \mid D=0]}_{\text {selection bias }}
\end{aligned}
$$

- Even if one could eliminate selection bias, the "payoff" would still be hard to interpret:

$$
\begin{aligned}
\mathbb{E}[Y(2)-Y(0) \mid D=2] & =\mathbb{E}\left[Y(2)-Y(0) \mid D=2, D_{/ 2}=0\right] \times \mathbb{P}\left(D_{/ 2}=0 \mid D=2\right) \\
& +\mathbb{E}\left[Y(2)-Y(0) \mid D=2, D_{/ 2}=1\right] \times \mathbb{P}\left(D_{/ 2}=1 \mid D=2\right)
\end{aligned}
$$

where $D_{/ 2}$ denotes one's next-best alternative

- Absent selection bias, the OLS estimand is still a weighted average of "different" payoffs

Kirkeboen, Leuven, and Mogstad (2016)

- As usual, the issue of selection bias can be addressed with instrumental variables
- Is IV sufficient to identify parameters with a clear economic interpretation?
- Consider the linear all-causes model

$$
Y=\beta_{0}+\beta_{1} D_{1}+\beta_{2} D_{2}+U \quad \text { with } \quad \mathbb{E}\left[D_{1} U\right] \neq 0 \text { and } \mathbb{E}\left[D_{2} U\right] \neq 0
$$

- Re-express U in terms of potential outcomes and potential treatments:

$$
\begin{aligned}
U & \equiv Y(0)-\beta_{0}+\left(Y(1)-Y(0)-\beta_{1}\right) D_{1}+\left(Y(2)-Y(0)-\beta_{2}\right) D_{2} \\
& \equiv Y(0)-\beta_{0} \\
& +\left(Y(1)-Y(0)-\beta_{1}\right)\left(D_{1}(0)+\left(D_{1}(1)-D_{1}(0)\right) Z_{1}+\left(D_{1}(2)-D_{1}(0)\right) Z_{2}\right) \\
& +\left(Y(2)-Y(0)-\beta_{2}\right)\left(D_{2}(0)+\left(D_{2}(1)-D_{2}(0)\right) Z_{1}+\left(D_{2}(2)-D_{2}(0)\right) Z_{2}\right)
\end{aligned}
$$

Kirkeboen, Leuven, and Mogstad (2016)

- Define the payoffs $\Delta^{1} \equiv Y(1)-Y(0)$ and $\Delta^{2} \equiv Y(2)-Y(0)$
- Using this expression for U, the IV orthogonality conditions can be written as

$$
\begin{aligned}
& \mathbb{E}\left[Z_{1} U\right]=\mathbb{E}\left[\left(\Delta^{1}-\beta_{1}\right)\left(D_{1}(1)-D_{1}(0)\right)+\left(\Delta^{2}-\beta_{2}\right)\left(D_{2}(1)-D_{2}(0)\right)\right]=0 \\
& \mathbb{E}\left[Z_{2} U\right]=\mathbb{E}\left[\left(\Delta^{1}-\beta_{1}\right)\left(D_{1}(2)-D_{1}(0)\right)+\left(\Delta^{2}-\beta_{2}\right)\left(D_{2}(2)-D_{2}(0)\right)\right]=0
\end{aligned}
$$

- Solving this system of equations for β_{1} and β_{2} yields two linear combinations of
- $\Delta^{1} \equiv Y(1)-Y(0)$, the payoff of major 1 relative to major 0
- $\Delta^{2} \equiv Y(2)-Y(0)$, the payoff of major 2 relative to major 0
- $\Delta^{2}-\Delta^{1} \equiv Y(2)-Y(1)$, the payoff of major 2 relative to major 1
- Thus, IV identifies weighted averages of payoffs to choosing different fields

Kirkeboen, Leuven, and Mogstad (2016)

For IV to identify interpretable parameters of interest, additional assumptions are needed:
(1) Constant effects, i.e., payoffs to major choice are homogeneous across agents:

$$
\beta_{1}=\Delta^{1} \equiv Y(1)-Y(0) \quad \beta_{2}=\Delta^{2} \equiv Y(2)-Y(0)
$$

(2) Restricting preferences to $D_{2}(0)=D_{2}(1)$ and $D_{1}(0)=D_{1}(2)$:

$$
\beta_{1}=\mathbb{E}\left[\Delta^{1} \mid D_{1}(1)-D_{1}(0)=1\right] \quad \beta_{2}=\mathbb{E}\left[\Delta^{2} \mid D_{2}(2)-D_{2}(0)=1\right]
$$

(3) Irrelevance and Next-Best Alternative, i.e., $D_{1}(1)=D_{1}(0)=0 \Longrightarrow D_{2}(1)=D_{2}(0)$ and $D_{2}(2)=D_{2}(0)=0 \Longrightarrow D_{1}(2)=D_{1}(0):$

$$
\beta_{1}=\mathbb{E}\left[\Delta^{1} \mid D_{1}(1)-D_{1}(0)=1, D_{2}(0)=0\right] \quad \beta_{2}=\mathbb{E}\left[\Delta^{2} \mid D_{2}(2)-D_{2}(0)=1, D_{1}(0)=0\right]
$$

Pair this assumption with info on next-best alternatives to identify field-specific LATEs.
(1) Framework for Instrumental Variables
(2) The Two-Sample Two-Stage Least Squares Estimator

- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Kline and Walters (2016)

- Kline and Walters (2016) studies patterns of substitution across public assistance programs
- Setting: the Head Start Impact Study, a 2002-2006 national longitudinal study
- Each Head Start applicant participates in one of three possible treatments, $D \in\{h, c, n\}$
- h, c, n denote Head Start, other pre-school programs, and home care, respectively
- A binary instrument $Z \in\{0,1\}$ indicates receipt of a Head Start offer
- The authors impose a theoretical restriction on substitution patterns:

$$
D(1) \neq D(0) \Longrightarrow D(1)=h
$$

Receiving a Head Start offer does not induce any agent to switch between n and c

Kline and Walters (2016)

This restriction implies that Head Start applicants can be partioned into five groups:
(1) n-compliers, $D(1)=h, D(0)=n$, switch from home care to Head Start
(2) c-compliers, $D(1)=h, D(0)=c$, switch from other programs to Head Start
(3) n-never takers, $D(1)=D(0)=n$, never attend Head Start and choose home care
(4) c-never takers, $D(1)=D(0)=c$, never attend Head Start and choose other programs
(5) \boldsymbol{h}-always takers, $D(1)=D(0)=h$, manage to enroll in Head Start in any case

Kline and Walters (2016)

- Consider the linear all-causes model $Y=\alpha+\beta S+U$ with $\mathbb{E}[S U] \neq 0$
- $S=1$ if $D=h$, i.e., an applicant participates in the Head Start program
- The Instrumental Variables estimand of β is

$$
\begin{aligned}
\beta_{\mathrm{IV}} & =\frac{\operatorname{Cov}[Z, Y]}{\operatorname{Cov}[Z, S]}=\frac{\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]}{\mathbb{E}[S \mid Z=1]-\mathbb{E}[S \mid Z=0]} \\
& =\frac{\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]}{\mathbb{E}[\mathbb{I}[D=h] \mid Z=1]-\mathbb{E}[\mathbb{I}[D=h] \mid Z=0]} \\
& =\mathbb{E}[Y(h)-Y(D(0)) \mid D(1)=h, D(0) \neq h] \\
& \equiv \operatorname{LATE}_{h}
\end{aligned}
$$

- LATE_{h} is the average effect of Head Start among compliers, where compliers
- Have different counterfactual choices, i.e., include both n-compliers and c-compliers
(1) Framework for Instrumental Variables
(2) The Two-Sample Two-Stage Least Squares Estimator
- Angrist and Krueger (1992)
(3) Framework for Instrumental Variables with Heterogeneity
(4) A LATE Extension: Multiple Unordered Treatments
- Kirkeboen, Leuven, and Mogstad (2016)
- Kline and Walters (2016)
(5) Summary

Summary

- If a single sample containing draws from (Y, X, Z) is not available, the Two-Sample Two-Stage Least Squares estimator is still consistent and asymptotically normal
- An important extension of the LATE framework is multiple unordered treatments:
- Kirkeboen, Leuven, and Mogstad (2016) shows that Instrumental Variables may eliminate selection bias, but does not necessarily identify economically interpretable parameters
- Kline and Walters (2016) shows how theoretically restricting agents' behavior may allow one to identify a salient Local Average Treatment Effect when agents face a discrete choice

