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Framework for Instrumental Variables

Framework for Instrumental Variables

• Y ∈ R is an outcome of interest

• X ∈ Rdx is a vector of observed determinants of Y that may be partitioned into

• D ∈ Rdd , a vector of observed determinants of interest

• W ∈ Rdw , a vector of control variables that typically include a deterministic constant

• U ∈ R encompasses all of the unobserved determinants of Y

• A linear all-causes model of the observed and unobserved determinants of the outcome:

Y = X ′β + U = D ′α+W ′γ + U

• Observed and unobserved determinants of Y are systematically related: E [XU] ̸= 0dx
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Framework for Instrumental Variables

Framework for Instrumental Variables

Because U has a causal interpretation and E [XU] ̸= 0dx :

• The orthogonality condition imposed by linear regression, E [XU] = 0dx , does not logically
match the systematic relationship between observed and unobserved determinants of Y

• Solution: consider a vector of instrumental variables, Z ∈ Rdz , such that E [ZU] = 0dz

To identify the vector of causal parameters β, make the following assumptions:

1 Exclusion: Z is not a direct determinant of Y , i.e., Y = X ′β + Z ′η + U is such that η = 0dz

2 Exogeneity: Z and U are orthogonal, i.e., E [ZU] = 0dz

3 Relevance: E [ZX ′] has full rank
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Framework for Instrumental Variables

Framework for Instrumental Variables

Under these assumptions, the orthogonality between Z and U can be restated as

E [ZU] = 0dz ⇐⇒ E [Z (Y − X ′β)] = 0dz ⇐⇒ E [ZY ] = E [ZX ′]β

1 if dz = dx , E [ZX ′] is an invertible matrix, and the Instrumental Variables estimand is

βIV ≡ E [ZX ′]
−1 E [ZY ]

2 if dz > dx , pre-multiply E [ZX ′] by a dx × dz matrix of deterministic constants c , so that

βIV ≡ E [cZX ′]
−1 E [cZY ]

If c is chosen to be the transpose of the matrix of first-stage regression coefficients,

βTSLS ≡ E [π′ZX ′]
−1 E [π′ZY ]

is the Two-Stage Least Squares estimand, where π ≡ E [ZZ ′]
−1 E [ZX ′]
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The Two-Sample Two-Stage Least Squares Estimator

The Two-Sample Two-Stage Least Squares Estimator

• Consider {Yi ,Xi ,Zi}ni=1, a sample of i.i.d. draws from the joint distribution of (Y ,X ,Z )

• The Two-Stage Least Squares estimator of β is the sample analog of βTSLS:

B̂TSLS ≡

(
1

n

n∑
i=1

Π̂′ZiX
′
i

)−1(
1

n

n∑
i=1

Π̂′ZiYi

)

• The Weak Law of Large Numbers and the Continuous Mapping Theorem imply that B̂TSLS
p→ β

• In addition, by the Central Limit Theorem and the Continuous Mapping Theorem,

√
n
(
B̂TSLS − β

)
d→ N

(
0,E [π′ZX ′]

−1
π′Var [ZU]πE [XZ ′π]

−1
)

• The Two-Stage Least Squares estimator is consistent for β and asymptotically normal
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The Two-Sample Two-Stage Least Squares Estimator

The Two-Sample Two-Stage Least Squares Estimator

• Suppose a single sample from the joint distribution of (Y ,X ,Z ) were not available

• In other words, no sample contains joint information on Y , X , and Z

• However, two independent samples are available:
{
Y A
i ,ZA

i

}nA
i=1

and
{
XB
i ,ZB

i

}nB
i=1

• Importantly, both samples include information on the vector of instrumental variables

• A classic example of this setting is Angrist and Krueger (1992)
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• Goal: estimate the effect of age at school entry on educational attainment

• Setting: states allow children to enroll in primary school if their age is 6 at given date cutoffs

• In addition, students are allowed to leave school as soon as they turn 16

• Assumption: the share of students dropping out at 16 is fixed and independent of birth date

• Implication: students born earlier in the year attain, on average, less education

• Angrist and Krueger (1992) instruments entry age with quarter-of-birth indicators
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• A dataset containing age of school entry (X ) and years of schooling (Y ) is not available

• Angrist and Krueger (1992) uses two distinct samples:

1 The 1960 Census to compute age at entry (and quarter of birth)

2 The 1980 Census to back out years of completed schooling and (quarter of birth)

• The authors propose a Two-Sample Two-Stage Least Squares estimator:

B̂TSTSLS ≡

(
1

n60

n60∑
i=1

Π̂′
60Z

60
i X ′60

i

)−1(
1

n80

n80∑
i=1

Π̂′
60Z

80
i Y 80

i

)
where

Π̂60 ≡

(
1

n60

n60∑
i=1

Z 60
i Z ′60

i

)−1(
1

n60

n60∑
i=1

Z 60
i X ′60

i

)
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• More in general, given the two samples A and B defined above, consider

B̂TSTSLS ≡

(
1

nB

nB∑
i=1

Π̂′
BZ

B
i X ′B

i

)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)

• If both samples contain independent and identically distributed random variables,

B̂TSTSLS
p→ βTSLS ≡ E [π′ZX ′]

−1 E [π′ZY ]

applying the Weak Law of Large Numbers and the Continuous Mapping Theorem
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• Alternative consistent estimators can be constructed exploiting these two samples:

B̂
(1)
TSTSLS =

(
1

nB

nB∑
i=1

Π̂′
BZ

B
i X ′B

i

)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)

=

(
1

nB

nB∑
i=1

Π̂′
BZ

B
i

(
Π̂′

BZ
B
i + RB

i

)′)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)

=

(
1

nB

nB∑
i=1

Π̂′
BZ

B
i Z ′B

i Π̂B

)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)

• Replacing ZB with ZA in the first matrix yields the alternative estimator for β,

B̂
(2)
TSTSLS ≡

(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Z

′A
i Π̂B

)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• The matrix of first-stage regression coefficients can be estimated using sample A too:

Π̂AB =

(
1

nA

nA∑
i=1

ZA
i Z

′A
i

)−1(
1

nB

nB∑
i=1

ZB
i X ′B

i

)

• Two additional consistent estimators for β are therefore

B̂
(3)
TSTSLS ≡

(
1

nB

nB∑
i=1

Π̂′
ABZ

B
i Z ′B

i Π̂AB

)−1(
1

nA

nA∑
i=1

Π̂′
ABZ

A
i Y

A
i

)

B̂
(4)
TSTSLS ≡

(
1

nA

nA∑
i=1

Π̂′
ABZ

A
i Z

′A
i Π̂AB

)−1(
1

nA

nA∑
i=1

Π̂′
ABZ

A
i Y

A
i

)

• Though consistent, these estimators are numerically distinct in finite samples
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

Moreover, if dz = dx , two-sample IV and two-sample TSLS are not always equivalent:

B̂
(2)
TSTSLS ≡

(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Z

′A
i Π̂B

)−1(
1

nA

nA∑
i=1

Π̂′
BZ

A
i Y

A
i

)

= Π̂−1
B

(
1

nA

nA∑
i=1

ZA
i Z

′A
i

)−1

Π̂′−1
B Π̂′

B

(
1

nA

nA∑
i=1

ZA
i Y

A
i

)

=

(
1

nB

nB∑
i=1

ZB
i X ′B

i

)−1(
1

nB

nB∑
i=1

ZB
i Z ′B

i

)(
1

nA

nA∑
i=1

ZA
i Z

′A
i

)−1

︸ ︷︷ ︸
̸=idz×dz

(
1

nA

nA∑
i=1

ZA
i Y

A
i

)

̸= B̂TSIV ≡

(
1

nB

nB∑
i=1

ZB
i X ′B

i

)−1(
1

nA

nA∑
i=1

ZA
i Y

A
i

)
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Angrist and Krueger (1992)

• Angrist and Krueger (1992) makes two additional assumptions:

1 Moments estimated from A are independent from moments estimated from B

2 Let nB [nA] denote nB as a function of nA. Then the ratio nA and nB is constant:

lim
nA→∞

nA
nB [nA]

= k ∈ R

• Under these assumptions and focusing, for simplicity, on the two-sample IV estimator:

g (β) ≡ 1

nA

nA∑
i=1

ZA
i Y

A
i − 1

nB

nB∑
i=1

ZB
i X ′B

i β

=
1

nA

nA∑
i=1

ZA
i Y

A
i − E [ZX ′]β −

√
nA
nB

(
1

√
nAnB

nB∑
i=1

ZB
i X ′B

i β −
√

nB
nA

E [ZX ′]β

)
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The Two-Sample Two-Stage Least Squares Estimator Angrist and Krueger (1992)

Angrist and Krueger (1992)

• Exploiting the two previous assumptions,
√
nA can be used as a normalization:

√
nAg (β) =

√
nA

(
1

nA

nA∑
i=1

ZA
i Y

A
i − E [ZX ′]β

)
−
√
knB

(
1

nB

nB∑
i=1

ZB
i X ′B

i β − E [ZX ′]β

)
d→ N (0, ϕA + kωB) = N (0,Φ)

• Thus, the two-sample Instrumental Variables estimator is asymptotically normal

• Indeed, B̂TSIV − β is proportional to g (β) and Slutsky’s Theorem implies the result

• The authors propose a TSIV estimator that uses Φ as a GMM weighting matrix

• Inoue and Solon (2010) shows that estimators such as B̂
(2)
TSTSLS are more efficient
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Framework for Instrumental Variables with Heterogeneity

Framework for Instrumental Variables with Heterogeneity

• Y ∈ R is an outcome of interest, D ∈ {0, 1} is a binary treatment

• D and Y are linked by potential outcomes Y (0) and Y (1)

• Agents choose whether to sort into the treated or untreated arm

• This self-selection is thought to be based on unobserved determinants of the outcome:

Y (0),Y (1)⊥̸⊥ D

• Suppose this self-selection could be shifted by an instrumental variable Z ∈ {0, 1}

• Z and D are linked by potential treatments D(0) and D(1)
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Framework for Instrumental Variables with Heterogeneity

Framework for Instrumental Variables with Heterogeneity

• Goal: estimate some feature of the distribution of the random variable Y (1)− Y (0)

• The effect of D on Y is heterogeneous across agents

• Unobservables induce agents to choose D = 0 or D = 1, so Z must satisfy four assumptions:

1 Exclusion: Y (d , z) = Y (d) ∀d , z

2 Exogeneity: (Y (0),Y (1),D(0),D(1)) ⊥⊥ Z

3 Relevance: Cov [D,Z ] ̸= 0. If exogeneity holds, relevance implies P (D(0) = D(1)) < 1

4 Monotonicity: P (D(1) ≥ D(0)) = 1 or P (D(0) ≥ D(1)) = 1

• Under these assumptions, the IV estimand identifies the Local Average Treatment Effect:

βIV ≡ Cov [Z ,Y ]

Cov [Z ,D]
=

E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 0]
= E [Y (1)− Y (0)|D(1) > D(0)]
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A LATE Extension: Multiple Unordered Treatments

A LATE Extension: Multiple Unordered Treatments

• Extend the LATE framework to the case in which there exist multiple unordered treatments

• Treatment states cannot be logically ranked

• Examples are discrete choice problems of field of study, occupation, location, etc.

• For simplicity, let us focus on the case in which D is trinary, i.e., D ∈ {0, 1, 2}

• This setting implies three treatment state indicators:

D0 ≡ I [D = 0] D1 ≡ I [D = 1] D2 ≡ I [D = 2]

• Suppose there exists a trinary instrument, Z ∈ {0, 1, 2}, that shifts self-selection into D

• This setting again implies three instrument indicators:

Z0 ≡ I [Z = 0] Z1 ≡ I [Z = 1] Z2 ≡ I [Z = 2]
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A LATE Extension: Multiple Unordered Treatments Kirkeboen, Leuven, and Mogstad (2016)

Kirkeboen, Leuven, and Mogstad (2016)

• Kirkeboen, Leuven, and Mogstad (2016) studies the effect of major choice on earnings

• A standard exclusion restriction implies three potential outcome random variables

• Each indicator Dj is associated with two potential treatment states

• Observed and potential outcomes are linked as follows:

Y = Y (0) + (Y (1)− Y (0))D1 + (Y (2)− Y (0))D2

Dj = Dj(0) + (Dj(1)− Dj(0))Z1 + (Dj(2)− Dj(0))Z2 for j ∈ {1, 2}

• The Imbens and Angrist (1994) monotonicity assumption in this setting is

D1(1) ≥ D1(0) and D2(2) ≥ D2(0)

Being assigned instrument Z = j does not make it less likely to choose major D = j
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A LATE Extension: Multiple Unordered Treatments Kirkeboen, Leuven, and Mogstad (2016)

Kirkeboen, Leuven, and Mogstad (2016)

• A raw comparison of earnings by major is contaminated by selection bias:

E [Y |D = 2]− E [Y |D = 0] = E [Y (2)|D = 2]− E [Y (0)|D = 0]

= E [Y (2)− Y (0)|D = 2]︸ ︷︷ ︸
payoff

+E [Y (0)|D = 2]− E [Y (0)|D = 0]︸ ︷︷ ︸
selection bias

• Even if one could eliminate selection bias, the “payoff” would still be hard to interpret:

E [Y (2)− Y (0)|D = 2] = E
[
Y (2)− Y (0)|D = 2,D/2 = 0

]
× P

(
D/2 = 0|D = 2

)
+ E

[
Y (2)− Y (0)|D = 2,D/2 = 1

]
× P

(
D/2 = 1|D = 2

)
where D/2 denotes one’s next-best alternative

• Absent selection bias, the OLS estimand is still a weighted average of “different” payoffs
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A LATE Extension: Multiple Unordered Treatments Kirkeboen, Leuven, and Mogstad (2016)

Kirkeboen, Leuven, and Mogstad (2016)

• As usual, the issue of selection bias can be addressed with instrumental variables

• Is IV sufficient to identify parameters with a clear economic interpretation?

• Consider the linear all-causes model

Y = β0 + β1D1 + β2D2 + U with E [D1U] ̸= 0 and E [D2U] ̸= 0

• Re-express U in terms of potential outcomes and potential treatments:

U ≡ Y (0)− β0 + (Y (1)− Y (0)− β1)D1 + (Y (2)− Y (0)− β2)D2

≡ Y (0)− β0

+ (Y (1)− Y (0)− β1) (D1(0) + (D1(1)− D1(0))Z1 + (D1(2)− D1(0))Z2)

+ (Y (2)− Y (0)− β2) (D2(0) + (D2(1)− D2(0))Z1 + (D2(2)− D2(0))Z2)
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A LATE Extension: Multiple Unordered Treatments Kirkeboen, Leuven, and Mogstad (2016)

Kirkeboen, Leuven, and Mogstad (2016)

• Define the payoffs ∆1 ≡ Y (1)− Y (0) and ∆2 ≡ Y (2)− Y (0)

• Using this expression for U, the IV orthogonality conditions can be written as

E [Z1U] = E
[(
∆1 − β1

)
(D1(1)− D1(0)) +

(
∆2 − β2

)
(D2(1)− D2(0))

]
= 0

E [Z2U] = E
[(
∆1 − β1

)
(D1(2)− D1(0)) +

(
∆2 − β2

)
(D2(2)− D2(0))

]
= 0

• Solving this system of equations for β1 and β2 yields two linear combinations of

• ∆1 ≡ Y (1)− Y (0), the payoff of major 1 relative to major 0

• ∆2 ≡ Y (2)− Y (0), the payoff of major 2 relative to major 0

• ∆2 −∆1 ≡ Y (2)− Y (1), the payoff of major 2 relative to major 1

• Thus, IV identifies weighted averages of payoffs to choosing different fields
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A LATE Extension: Multiple Unordered Treatments Kirkeboen, Leuven, and Mogstad (2016)

Kirkeboen, Leuven, and Mogstad (2016)

For IV to identify interpretable parameters of interest, additional assumptions are needed:

1 Constant effects, i.e., payoffs to major choice are homogeneous across agents:

β1 = ∆1 ≡ Y (1)− Y (0) β2 = ∆2 ≡ Y (2)− Y (0)

2 Restricting preferences to D2(0) = D2(1) and D1(0) = D1(2):

β1 = E
[
∆1|D1(1)− D1(0) = 1

]
β2 = E

[
∆2|D2(2)− D2(0) = 1

]
3 Irrelevance and Next-Best Alternative, i.e., D1(1) = D1(0) = 0 =⇒ D2(1) = D2(0) and
D2(2) = D2(0) = 0 =⇒ D1(2) = D1(0):

β1 = E
[
∆1|D1(1)− D1(0) = 1,D2(0) = 0

]
β2 = E

[
∆2|D2(2)− D2(0) = 1,D1(0) = 0

]
Pair this assumption with info on next-best alternatives to identify field-specific LATEs.
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A LATE Extension: Multiple Unordered Treatments Kline and Walters (2016)

Kline and Walters (2016)

• Kline and Walters (2016) studies patterns of substitution across public assistance programs

• Setting: the Head Start Impact Study, a 2002-2006 national longitudinal study

• Each Head Start applicant participates in one of three possible treatments, D ∈ {h, c , n}
• h, c, n denote Head Start, other pre-school programs, and home care, respectively

• A binary instrument Z ∈ {0, 1} indicates receipt of a Head Start offer

• The authors impose a theoretical restriction on substitution patterns:

D(1) ̸= D(0) =⇒ D(1) = h

Receiving a Head Start offer does not induce any agent to switch between n and c
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A LATE Extension: Multiple Unordered Treatments Kline and Walters (2016)

Kline and Walters (2016)

This restriction implies that Head Start applicants can be partioned into five groups:

1 n-compliers, D(1) = h,D(0) = n, switch from home care to Head Start

2 c-compliers, D(1) = h,D(0) = c , switch from other programs to Head Start

3 n-never takers, D(1) = D(0) = n, never attend Head Start and choose home care

4 c-never takers, D(1) = D(0) = c , never attend Head Start and choose other programs

5 h-always takers, D(1) = D(0) = h, manage to enroll in Head Start in any case
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A LATE Extension: Multiple Unordered Treatments Kline and Walters (2016)

Kline and Walters (2016)

• Consider the linear all-causes model Y = α+ βS + U with E [SU] ̸= 0

• S = 1 if D = h, i.e., an applicant participates in the Head Start program

• The Instrumental Variables estimand of β is

βIV =
Cov [Z ,Y ]

Cov [Z ,S ]
=

E [Y |Z = 1]− E [Y |Z = 0]

E [S |Z = 1]− E [S |Z = 0]

=
E [Y |Z = 1]− E [Y |Z = 0]

E [I [D = h] |Z = 1]− E [I [D = h] |Z = 0]

= E [Y (h)− Y (D(0))|D(1) = h,D(0) ̸= h]

≡ LATEh

• LATEh is the average effect of Head Start among compliers, where compliers

• Have different counterfactual choices, i.e., include both n-compliers and c-compliers
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Summary

Summary

• If a single sample containing draws from (Y ,X ,Z ) is not available, the Two-Sample
Two-Stage Least Squares estimator is still consistent and asymptotically normal

• An important extension of the LATE framework is multiple unordered treatments:

• Kirkeboen, Leuven, and Mogstad (2016) shows that Instrumental Variables may eliminate selection
bias, but does not necessarily identify economically interpretable parameters

• Kline and Walters (2016) shows how theoretically restricting agents’ behavior may allow one to
identify a salient Local Average Treatment Effect when agents face a discrete choice
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