The Theory of Identification

ECON 31720 Applied Microeconometrics

Francesco Ruggieri

The University of Chicago
October 21, 2020
(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products

4. Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary
(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Framework for the Theory of Identification

- Let $W \in \mathbb{R}^{d_{w}}$ be an observed random vector with known distribution G
- $\theta \in \Theta$ is a parameter describing a hypothetical state of the world
- θ may be characterized by one or more constants, distributions, or both
- The parameter space Θ places limitations on the hypothetical states of the world
- Θ may restrict the support of a constant (e.g. $\beta>0$)
- Θ may restrict the set of admissible distributions (e.g. $F \in \mathcal{F}: \mathbb{E}_{F}[X U]=0$)

Framework for the Theory of Identification

- A model $\left\{\left(\theta, G_{\theta}\right): \theta \in \Theta\right\}$ maps parameters into potential distributions of W
- G_{θ} is the implied distribution of W in the hypothetical state of the world associated with θ
- A target parameter $\{(\theta, \pi(\theta)): \theta \in \Theta\}$ is a function of interest for the researcher
- Importantly, each model is a function $\mu(\theta)=G_{\theta}$
- Each parameter, $\theta \in \Theta$, implies one and one only potential distribution G_{θ}
- However, it may be the case that $G_{\theta_{1}}=G_{\theta_{2}}$ for $\theta_{1} \neq \theta_{2}$
- Analogously, each target parameter is a function $\pi=\pi(\theta)$
- Each parameter (state of the world), $\theta \in \Theta$, implies one and one only target parameter π
- However, any given π need not be implied by one and one only θ

Framework for the Theory of Identification

Lewbel (2019) considers two additional definitions:
(1) The structure

$$
s(G, \pi)=\{\theta \in \Theta: \mu(\theta)=G, \pi(\theta)=\pi\}
$$

is the set of parameters that yield both the observed distribution G and the target parameter π
(2) Two target parameters, π_{1} and π_{2}, are defined to be observationally equivalent if

$$
\exists G \text { s.t. }\left(G, \pi_{1}\right) \neq \emptyset \text { and } s\left(G, \pi_{2}\right) \neq \emptyset
$$

(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Point Identification

- In the lecture notes, a target parameter π is defined to be point identified if the set

$$
\Pi^{*}(G) \equiv\left\{\pi(\theta): \theta \in \Theta, G_{\theta}=G\right\}
$$

includes a single element.

- Analogously, Lewbel (2019) defines a target parameter π to be point identified if

$$
\nexists \tilde{\pi} \neq \pi \quad \text { s.t. } \quad \pi \text { and } \tilde{\pi} \text { are observationally equivalent }
$$

- In other words, there do not exist states of the world (i.e., parameters) that both
(1) imply the observed distribution of the data via the posited model ($G_{\theta}=G$), and
(2) imply two distinct target parameters
(1) Framework for the Theory of Identification
(2) Point Identification
- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
© Summary

Examples of Point Identification: Median

- Observed data: a real-valued random variable $W \in \mathbb{R}$ with distribution G
- Parameter: the marginal distribution of $W, \theta=F$
- Parameter space: all distributions of W with a strictly monotonic distribution function

$$
\Theta=\left\{F \in \mathcal{F}: F(w)>F\left(w^{\prime}\right) \forall w>w^{\prime}\right\}
$$

- The model is trivially $G_{\theta}(w) \equiv \mathbb{P}_{\theta}(W \leq w)=F(w)$

Examples of Point Identification: Median

- Target parameter: the median of $W, \pi \equiv \inf \{w \in \mathbb{R}: F(w) \geq 0.5\}$
- In this case, it is not possible for $\pi \neq \tilde{\pi}$ to be observationally equivalent because

$$
F(\pi)=F(\tilde{\pi})=0.5 \Longrightarrow \pi=\tilde{\pi} \quad \forall F \in \Theta
$$

and each possible distribution of W has a unique distribution function.
(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Examples of Point Identification: Linear Supply and Demand

- Observed data: a random vector $W \equiv(Q, P, Z)$ with $Q, P \in \mathbb{R}_{+}$and $Z \in \mathbb{R}$
- Parameter: $\theta=(\alpha, \beta, \gamma, F)$, where
- α, β, γ are real constants, and F is the joint distribution function for (P, Z, U, V)
- Parameter space: all constants and distributions of W such that demand equals supply

$$
\Theta=\{\theta \equiv(\alpha, \beta, \gamma, F): Q=\beta P+\gamma Z+U=\alpha P+V, U \Perp Z, V \Perp Z\}
$$

- The model is a standard system of supply and demand equations:

$$
G_{\theta}(q, p, z) \equiv \mathbb{P}_{\theta}(\beta P+\gamma Z+U \leq q, P \leq p, Z \leq z)=\mathbb{P}_{\theta}(\alpha P+V \leq q, P \leq p, Z \leq z)
$$

- Target parameter: the price elasticity of demand, $\pi=\alpha$

Examples of Point Identification: Linear Supply and Demand

- The model implies the following reduced-form coefficients:

$$
Q=\phi_{1} Z+R_{1} \quad Q=\phi_{2} Z+R_{2} \quad \text { with } \quad \phi_{1}=\frac{\alpha \gamma}{\alpha-\beta} \text { and } \phi_{2}=\frac{\gamma}{\alpha-\beta}
$$

- The model can therefore be rewritten as

$$
G_{\theta}(q, z) \equiv \mathbb{P}_{\theta}\left(\phi_{1} Z+R_{1} \leq q, Z \leq z\right)=\mathbb{P}_{\theta}\left(\phi_{2} Z+R_{2} \leq q, Z \leq z\right)
$$

with $\phi_{1}, \phi_{2}, R_{1}, R_{2}$ defined as resulting from the simultaneous equations above

- Notice that $\alpha=\frac{\phi_{2}}{\phi_{1}}$. Target parameters $\widehat{\alpha}$ and $\widetilde{\alpha}$ will be observationally equivalent if

$$
\widehat{\alpha} \neq \widetilde{\alpha} \quad \text { but } \quad \phi_{1}=\phi_{2}=0
$$

which occurs if $\gamma=\mathbf{0}$, i.e., the exogenous supply shifter does not affect quantity supplied

- For α to be point identified, Θ must be updated with the assumption that $\gamma \neq 0$
(1) Framework for the Theory of Identification
(2) Point Identification
- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products

4 Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Examples of Point Identification: Latent Error Distribution

- Observed data: a random vector $W \equiv(X, Y)$ with $X \in \mathbb{R}$ and $Y \in\{0,1\}$
- Parameter: $\theta=F$, where F is the joint distribution function for (X, U)
- Parameter space: all joint distributions such that X and U are independent

$$
\Theta=\{F \in \mathcal{F}: X \Perp U \text { and } X \text { has continuous support }\}
$$

- The model is $G_{\theta}(x, y) \equiv \mathbb{P}_{\theta}(\mathbb{I}[X+U>0] \leq y, X \leq x)$
- Target parameter: the marginal distribution function of $U, H_{U}(u)$

Examples of Point Identification: Latent Error Distribution

- Notice that, because $Y \in\{0,1\}$ and $X \Perp U$, for any $x \in \mathcal{X}$

$$
\mathbb{E}_{G}[Y \mid X=x]=\mathbb{P}_{F}(X+U>0 \mid X=x)=\mathbb{P}_{F}(x+U>0)=1-H_{U}(-x)
$$

- The conditional expectation $\mathbb{E}[Y \mid X]$ is a feature of the observed data
- The target parameter can be point identified for all u in the support of $-X, \mathcal{X}^{-}$

$$
H_{U}(u)=1-\mathbb{E}_{G}[Y \mid X=-u] \quad \forall u \in \mathcal{X}^{-}
$$

- Two distinct marginal distributions of U cannot imply equal $\mathbb{E}[Y \mid X=x]$ for all x

$$
\widehat{H}_{U}(u) \neq \widetilde{H}_{U}(u) \text { for some } u \Longrightarrow \mathbb{E}_{\widehat{F}}[Y \mid X=x] \neq \mathbb{E}_{\widetilde{F}}[Y \mid X=x] \text { for some } x
$$

Thus, no marginal distributions of U can be observationally equivalent
(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Partial Identification

- In the lecture notes, a target parameter π is defined to be partially (or set) identified if

$$
\Pi^{*}(G) \equiv\left\{\pi(\theta): \theta \in \Theta, G_{\theta}=G\right\}
$$

has more than one element and is a strict subset of $\mathbb{R}^{d_{\pi}}$

- Analogously, Lewbel (2019) defines a target parameter π to be partially identified if

$$
\exists \tilde{\pi} \in \mathbb{R}^{d_{\pi}} \quad \text { s.t. } \quad \pi \text { and } \tilde{\pi} \text { are observationally equivalent }
$$

- If all possible $\tilde{\pi}$ are observationally equivalent to π, then π is not (set) identified
- In other words, it is not the case that all states of the world (i.e., parameters) both
(1) Imply the observed distribution of the data via the posited model ($G_{\theta}=G$), and
(2) Imply two or more distinct target parameters
(1) Framework for the Theory of Identification
(2) Point Identification
- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
© Summary

Examples of Partial Identification: Expenditure Shares

- Observed data: a real-valued random variable W_{1} with marginal distribution G
- Suppose W_{1} denotes the fraction of a consumer's budget that is spent on food
- Parameter: $\theta=F$, where F is the joint distribution function of W
- Each W_{j} in $W \equiv\left(W_{1}, \ldots, W_{\bar{j}}\right)$ denotes the budget share that is spent on a good
- Parameter space: all distributions of W with support $[0,1]^{\bar{j}}$:

$$
\Theta=\left\{F \in \mathcal{F}: F \text { has support }[0,1]^{\bar{j}}\right\}
$$

- The model is $G_{\theta}\left(w_{1}, \ldots, w_{\bar{j}}\right) \equiv \mathbb{P}_{\theta}\left(W_{1} \leq w_{1}, \ldots, W_{\bar{j}} \leq w_{\bar{j}}, \sum_{j=1}^{\bar{j}} W_{j}=1\right)$
- Target parameter: the expected fraction of income spent on clothing: $\pi=\mathbb{E}\left[W_{2}\right]$

Examples of Partial Identification: Expenditure Shares

- Because W_{1} is observed, the expected food expenditure share can be trivially identified:

$$
\mathbb{E}_{F}\left[W_{1}\right]=\mathbb{E}_{G}\left[W_{1}\right]
$$

- W_{2} is unobserved, so the expected clothing expenditure share cannot be point identified
- However, knowledge of $\mathbb{E}\left[W_{1}\right]$ can be used to bound $\mathbb{E}\left[W_{2}\right]$
- Given the restriction on the support of W, the lower bound is trivially 0
- Because $\sum_{j=1}^{\bar{j}} W_{j}=1$ by assumption and $\mathbb{E}\left[W_{1}\right]$ is point identified, the upper bound is $1-\mathbb{E}\left[W_{1}\right]$, which occurs if food and clothing jointly exhaust consumer budgets (on average)
- Thus, $\mathbb{E}\left[W_{2}\right]$ is partially identified as

$$
\pi \equiv \mathbb{E}\left[W_{2}\right] \in\left[0,1-\mathbb{E}_{G}\left[W_{1}\right]\right]
$$

(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products

4 Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
© Summary

Examples of Partial Identification: Demand for Differentiated Products

- Demand is commonly estimated with discrete choice models of product differentiation
- Individual i 's utility from purchasing and consuming product $j \in\{0,1, \ldots, \bar{j}\}$ is

$$
U_{i j}=\alpha_{i} P_{i j}+X_{i j}^{\prime} \beta_{i}+\eta_{j}+\varepsilon_{i j}
$$

where α_{i} and β_{i} are random coefficients, P indicates prices, X is a vector of observed product characteristics, and η encompasses unobserved product features

- The distribution of utility draws, ε, is typically parameterized as a Type-I Extreme Value
- This modeling choice is referred to as conditional logit
- With this parameterization of the i.i.d. shocks, individual choice probabilities are

$$
\mathbb{P}(i \rightarrow j)=\frac{\exp \left(\alpha_{i} P_{i j}+X_{i j}^{\prime} \beta_{i}+\eta_{j}\right)}{\sum_{k=0}^{\bar{j}} \exp \left(\alpha_{i} P_{i k}+X_{i k}^{\prime} \beta_{i}+\eta_{k}\right)}
$$

Examples of Partial Identification: Demand for Differentiated Products

- Parameters can be conveniently estimated with maximum likelihood
- However, the T1EV parameterization imposes severe restrictions on consumer behavior
- The most salient restriction is the Independence of Irrelevant Alternatives property:

$$
\frac{\mathbb{P}(i \rightarrow j)}{\mathbb{P}(i \rightarrow k)}=\frac{\exp \left(\alpha_{i} P_{i j}+X_{i j}^{\prime} \beta_{i}+\eta_{j}\right)}{\exp \left(\alpha_{i} P_{i k}+X_{i k}^{\prime} \beta_{i}+\eta_{k}\right)} \quad \forall j, k
$$

Whether a consumer's choice set is expanded (restricted) by the inclusion (exclusion) of a product has no effect on the relative choice probabilities of any pair of alternatives

- If one could just not parameterize the distribution of latent utility draws...

Examples of Partial Identification: Demand for Differentiated Products

Tebaldi, Torgovitsky, and Yang (2019):

- Does not parameterize the distribution of latent utility draws
- Partially identifies target parameters associated with consumer demand counterfactuals
- Assumes that consumer valuations and product prices are additively separable:

$$
Y_{i} \equiv \arg \max _{j \in\{0,1, \ldots, \bar{j}\}} V_{i j}-P_{j}
$$

where V denotes valuations and P indicates prices

- Key intuition: given one or more price vectors, it is possible to partition the space of valuations into sets in which consumer behavior is observationally equivalent

Examples of Partial Identification: Demand for Differentiated Products

Consider the case in which there are $\bar{j}=2$ products and let p^{a} be an observed price vector.

Examples of Partial Identification: Demand for Differentiated Products

Now let p^{*} be a counterfactual price vector.

Examples of Partial Identification: Demand for Differentiated Products

Combine the previous two figures and construct the Minimal Relevant Partition (MRP).

Examples of Partial Identification: Demand for Differentiated Products

- Consumer valuations differ within each subset of the space of valuations
- But consumer choices do not vary, so those valuations are observationally equivalent
- E.g. consumers with valuations in \mathcal{V}_{4} choose good 2 when $p=p^{a}$ and good 1 when $p=p^{*}$
- The observed data consist of consumption choice shares when $p=p^{a}$
- E.g. $P(Y=0)=1-\alpha-\beta, P(Y=1)=\alpha, P(Y=2)=\beta$

Examples of Partial Identification: Demand for Differentiated Products

Suppose the target parameter were the share of consumers who buy good 2 if $p=p^{*}$

- Model assumptions are not sufficient to point identify $\phi_{3}=\int_{\mathcal{V}_{3}} f(v) d v$
- But observed choice shares can be used to construct bounds for the target parameter
- "Worst-case" scenario: consumers who buy good 2 if $p=p^{a}$ have valuations in \mathcal{V}_{2} and/or \mathcal{V}_{4}
- "Best-case" scenario: consumers who buy good 2 if $p=p^{a}$ have valuations in \mathcal{V}_{3}
- The target parameter can be bounded below by 0 and above by $P(Y=2)=\beta$
(1) Framework for the Theory of Identification
(2) Point Identification
- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Falsifying Selection on Observables

The following example is based on Heckman, Ichimura, and Todd (1998):

- $D \in\{0,1\}$ indicates participation in a job training program
- $X \in \mathbb{R}^{d_{x}}$ is a vector of predetermined observable characteristics
- $Y \in \mathbb{R}$ denotes earnings at some point after the job training program
- Consider two alternative institutional scenarios:
(1) The job training program accepts all individuals who wish to participate
(2) Job training is randomly offered to a subset of applicants

Falsifying Selection on Observables

Consider the case in which all applicants are accepted into the program:

- Observed data: a random vector, $W \equiv(Y, D, X)$, jointly distributed according to G
- Parameter: $\theta=F$, where F is the joint distribution function for $(Y(0), Y(1), D, X)$
- Parameter space: all distributions such that selection on observables holds

$$
\Theta=\{\theta \in \Theta:(Y(0), Y(1)) \Perp D \mid X \text { under } F\}
$$

- Model: $G_{\theta}(y, d, x)=\mathbb{P}_{\theta}(D Y(1)+(1-D) Y(0) \leq y, D \leq d, X \leq x)$
- No focus on a specific target parameter, so the identified set is

$$
\Theta^{*}(G) \equiv\left\{\theta \in \Theta: G_{\theta}(y, d, x)=G(y, d, x) \forall y, d, x\right\}
$$

Falsifying Selection on Observables

- A model is said to be falsifiable if there exists a known function $\tau: \mathcal{G} \rightarrow\{0,1\}$ such that
(1) $\tau(G)=1 \Longrightarrow \Theta^{*}(G)=\emptyset$
(2) $\tau(G)=1$ for at least one $G \in \mathcal{G}$
- Assume $\exists \tau$ that meets these two conditions. Thus, $\exists G$ such that $\Theta^{*}(G)=\emptyset$
- Argue by contradiction. Suppose there existed a state of the world (i.e., a θ) such that

$$
\left.\begin{array}{rl}
\mathbb{P}_{\theta}\left(Y(0) \leq y_{0}, Y(1) \leq y_{1} \mid D\right. & =d, X=x)
\end{array} \begin{array}{rl}
& \equiv \mathbb{P}_{G}\left(Y \leq y_{0} \mid D=0, X=x\right) \mathbb{P}_{G}\left(Y \leq y_{1} \mid D=1, X=x\right) \\
\mathbb{P}_{\theta}(D & =d, X=x)
\end{array}\right) \mathbb{P}_{G}(D=d, X=x) .
$$

for all y_{0}, y_{1}, d, x, i.e., potential outcomes are independent of D conditional on X.

Falsifying Selection on Observables

- The proposed state of the world (i.e., parameter) θ :
(1) Satisfies selection on observables, i.e., $\boldsymbol{\theta} \in \Theta$, because \mathbb{P}_{θ} does not depend on $d=0,1$.
(2) Implies a distribution that is "consistent" with the distribution of observed data, G :

$$
\begin{aligned}
\mathbb{P}_{\theta}(Y \leq y \mid D=0, X=x) & =\mathbb{P}_{\theta}(D Y(1)+(1-D) Y(0) \leq y \mid D=0, X=x) \\
& =\mathbb{P}_{\theta}(Y(0) \leq y \mid D=0, X=x) \\
& =\mathbb{P}_{\theta}(Y(0) \leq y, Y(1) \leq+\infty \mid D=0, X=x) \\
& =\mathbb{P}_{G}(Y \leq y \mid D=0, X=x) \mathbb{P}_{G}(Y \leq+\infty \mid D=1, X=x) \\
& =\mathbb{P}_{G}(Y \leq y \mid D=0, X=x) \times 1 \\
\mathbb{P}_{\theta}(Y \leq y \mid D=1, X=x) & =1 \times \mathbb{P}_{G}(Y \leq y \mid D=1, X=x)
\end{aligned}
$$

for all $x \in \mathcal{X}$. Thus, $G_{\theta}=G$, so $\theta \in \Theta^{*}(G)$.

- $\theta \in \Theta$ and $\theta \in \Theta^{*}(G)$ contradict that $\Theta^{*}(G)=\emptyset$. Thus, the model is not falsifiable.

Falsifying Selection on Observables

Consider the case in which a random subset of the applicants is offered participation:

- $S \in\{0,1\}$ denotes whether a worker applied for/selected into the program
- $R \in\{0,1\}$ denotes whether a worker was randomized into the program
- $D \equiv S R$: workers are "treated" if they apply for and are randomized into the program
- In the first scenario, selection on observables entails assuming that $(Y(0), Y(1)) \Perp S \mid X$
- Non-applicants' earnings are comparable to potential untreated earnings of participants
- As shown above, this model is untestable (not falsifiable) because all applicants are treated
- In the second scenario, non applicants' earnings should be comparable to observed earnings of applicants who are not randomized into the program (and have the same x)

Falsifying Selection on Observables

- Parameter: $\theta=F$, where F is the joint distribution function for $(Y(0), Y(1), R, S, X)$
- Parameter space: all distributions such that selection on observables holds and program participation is randomly assigned to applicants

$$
\Theta=\{\theta \in \Theta:(Y(0), Y(1)) \Perp S R \mid X \text { and }(Y(0), Y(1)) \Perp R \mid S=1 \text { under } F\}
$$

- Model: $G_{\theta}(y, r, s, x)=\mathbb{P}_{\theta}(S R Y(1)+(1-S R) Y(0) \leq y, R \leq r, S \leq s, X \leq x)$
- Any state of the world implies a distribution for "unsuccessful" applicants:

$$
\begin{aligned}
\mathbb{P}_{\theta}(Y \leq y \mid R=0, S=1, X=x) & =\mathbb{P}_{\theta}(Y(0) \leq y \mid R=0, S=1, X=x) \\
& =\mathbb{P}_{\theta}(Y(0) \leq y \mid S=1, X=x) \\
& =\mathbb{P}_{\theta}(Y(0) \leq y \mid S=0, X=x) \\
& =\mathbb{P}_{\theta}(Y \leq y \mid S=0, X=x)
\end{aligned}
$$

Falsifying Selection on Observables

Thus, a function $\boldsymbol{\tau}$ can be constructed as follows:

$$
\tau(G)=\mathbb{I}\left[\mathbb{P}_{G}(Y \leq y \mid R=0, S=1, X=x) \neq \mathbb{P}_{G}(Y \leq y \mid S=0, X=x)\right]
$$

If $\boldsymbol{\tau}(\boldsymbol{G})$ were equal to $\mathbf{1}$ and $\boldsymbol{\theta}$ belonged to the identified set, then

$$
\begin{aligned}
\mathbb{P}_{\theta}(Y \leq y \mid R=0, S=1, X=x) & =\mathbb{P}_{G}(Y \leq y \mid R=0, S=1, X=x) \\
& \neq \mathbb{P}_{G}(Y \leq y \mid S=0, X=x) \\
& =\mathbb{P}_{\theta}(Y \leq y \mid S=0, X=x)
\end{aligned}
$$

which would contradict the equality proven in the previous slide. This model is falsifiable.
(1) Framework for the Theory of Identification
(2) Point Identification

- Example: Median
- Example: Linear Supply and Demand
- Example: Latent Error Distribution
(3) Partial Identification
- Example: Expenditure Shares
- Example: Demand for Differentiated Products
(4) Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)
(5) Summary

Summary

- Given a model, a target parameter is
- Point identified, if there exists no other observationally equivalent target parameter
- Set identified, if there exist other observationally equivalent target parameters (while at least another is not)
- Without further assumptions, selection on observables is not falsifiable
- Heckman, Ichimura, and Todd (1998) discusses a setting in which it is falsifiable

