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Framework for the Theory of Identification

Framework for the Theory of Identification

• Let W ∈ Rdw be an observed random vector with known distribution G

• θ ∈ Θ is a parameter describing a hypothetical state of the world

• θ may be characterized by one or more constants, distributions, or both

• The parameter space Θ places limitations on the hypothetical states of the world

• Θ may restrict the support of a constant (e.g. β > 0)

• Θ may restrict the set of admissible distributions (e.g. F ∈ F : EF [XU] = 0)
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Framework for the Theory of Identification

Framework for the Theory of Identification

• A model {(θ,Gθ) : θ ∈ Θ} maps parameters into potential distributions of W

• Gθ is the implied distribution of W in the hypothetical state of the world associated with θ

• A target parameter {(θ, π (θ)) : θ ∈ Θ} is a function of interest for the researcher

• Importantly, each model is a function µ (θ) = Gθ

• Each parameter, θ ∈ Θ, implies one and one only potential distribution Gθ

• However, it may be the case that Gθ1 = Gθ2 for θ1 ̸= θ2

• Analogously, each target parameter is a function π = π (θ)

• Each parameter (state of the world), θ ∈ Θ, implies one and one only target parameter π

• However, any given π need not be implied by one and one only θ
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Framework for the Theory of Identification

Framework for the Theory of Identification

Lewbel (2019) considers two additional definitions:

1 The structure
s (G , π) = {θ ∈ Θ : µ (θ) = G , π (θ) = π}

is the set of parameters that yield both the observed distribution G and the target parameter π

2 Two target parameters, π1 and π2, are defined to be observationally equivalent if

∃G s.t. (G , π1) ̸= ∅ and s (G , π2) ̸= ∅
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Point Identification

Point Identification

• In the lecture notes, a target parameter π is defined to be point identified if the set

Π∗ (G ) ≡ {π (θ) : θ ∈ Θ,Gθ = G}

includes a single element.

• Analogously, Lewbel (2019) defines a target parameter π to be point identified if

∄ π̃ ̸= π s.t. π and π̃ are observationally equivalent

• In other words, there do not exist states of the world (i.e., parameters) that both

1 imply the observed distribution of the data via the posited model (Gθ = G), and

2 imply two distinct target parameters
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Point Identification Example: Median

Examples of Point Identification: Median

• Observed data: a real-valued random variable W ∈ R with distribution G

• Parameter: the marginal distribution of W , θ = F

• Parameter space: all distributions of W with a strictly monotonic distribution function

Θ = {F ∈ F : F (w) > F (w ′) ∀w > w ′}

• The model is trivially Gθ (w) ≡ Pθ (W ≤ w) = F (w)
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Point Identification Example: Median

Examples of Point Identification: Median

• Target parameter: the median of W , π ≡ inf {w ∈ R : F (w) ≥ 0.5}

• In this case, it is not possible for π ̸= π̃ to be observationally equivalent because

F (π) = F (π̃) = 0.5 =⇒ π = π̃ ∀F ∈ Θ

and each possible distribution of W has a unique distribution function.
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Point Identification Example: Linear Supply and Demand

Examples of Point Identification: Linear Supply and Demand

• Observed data: a random vector W ≡ (Q,P,Z ) with Q,P ∈ R+ and Z ∈ R

• Parameter: θ = (α, β, γ,F ), where

• α, β, γ are real constants, and F is the joint distribution function for (P,Z ,U,V )

• Parameter space: all constants and distributions of W such that demand equals supply

Θ = {θ ≡ (α, β, γ,F ) : Q = βP + γZ + U = αP + V ,U ⊥⊥ Z ,V ⊥⊥ Z}

• The model is a standard system of supply and demand equations:

Gθ (q, p, z) ≡ Pθ (βP + γZ + U ≤ q,P ≤ p,Z ≤ z) = Pθ (αP + V ≤ q,P ≤ p,Z ≤ z)

• Target parameter: the price elasticity of demand, π = α
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Point Identification Example: Linear Supply and Demand

Examples of Point Identification: Linear Supply and Demand

• The model implies the following reduced-form coefficients:

Q = ϕ1Z + R1 Q = ϕ2Z + R2 with ϕ1 =
αγ

α− β
and ϕ2 =

γ

α− β

• The model can therefore be rewritten as

Gθ (q, z) ≡ Pθ (ϕ1Z + R1 ≤ q,Z ≤ z) = Pθ (ϕ2Z + R2 ≤ q,Z ≤ z)

with ϕ1, ϕ2,R1,R2 defined as resulting from the simultaneous equations above

• Notice that α = ϕ2

ϕ1
. Target parameters α̂ and α̃ will be observationally equivalent if

α̂ ̸= α̃ but ϕ1 = ϕ2 = 0

which occurs if γ = 0, i.e., the exogenous supply shifter does not affect quantity supplied

• For α to be point identified, Θ must be updated with the assumption that γ ̸= 0
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Point Identification Example: Latent Error Distribution

Examples of Point Identification: Latent Error Distribution

• Observed data: a random vector W ≡ (X ,Y ) with X ∈ R and Y ∈ {0, 1}

• Parameter: θ = F , where F is the joint distribution function for (X ,U)

• Parameter space: all joint distributions such that X and U are independent

Θ = {F ∈ F : X ⊥⊥ U and X has continuous support}

• The model is Gθ (x , y) ≡ Pθ (I [X + U > 0] ≤ y ,X ≤ x)

• Target parameter: the marginal distribution function of U, HU (u)
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Point Identification Example: Latent Error Distribution

Examples of Point Identification: Latent Error Distribution

• Notice that, because Y ∈ {0, 1} and X ⊥⊥ U, for any x ∈ X

EG [Y |X = x ] = PF (X + U > 0|X = x) = PF (x + U > 0) = 1− HU (−x)

• The conditional expectation E [Y |X ] is a feature of the observed data

• The target parameter can be point identified for all u in the support of −X , X−

HU (u) = 1− EG [Y |X = −u] ∀u ∈ X−

• Two distinct marginal distributions of U cannot imply equal E [Y |X = x ] for all x

ĤU (u) ̸= H̃U (u) for some u =⇒ EF̂ [Y |X = x ] ̸= EF̃ [Y |X = x ] for some x

Thus, no marginal distributions of U can be observationally equivalent
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Partial Identification

Partial Identification

• In the lecture notes, a target parameter π is defined to be partially (or set) identified if

Π∗ (G ) ≡ {π (θ) : θ ∈ Θ,Gθ = G}

has more than one element and is a strict subset of Rdπ

• Analogously, Lewbel (2019) defines a target parameter π to be partially identified if

∃ π̃ ∈ Rdπ s.t. π and π̃ are observationally equivalent

• If all possible π̃ are observationally equivalent to π, then π is not (set) identified

• In other words, it is not the case that all states of the world (i.e., parameters) both

1 Imply the observed distribution of the data via the posited model (Gθ = G), and

2 Imply two or more distinct target parameters
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Partial Identification Example: Expenditure Shares

Examples of Partial Identification: Expenditure Shares

• Observed data: a real-valued random variable W1 with marginal distribution G

• Suppose W1 denotes the fraction of a consumer’s budget that is spent on food

• Parameter: θ = F , where F is the joint distribution function of W

• Each Wj in W ≡
(
W1, . . . ,Wj

)
denotes the budget share that is spent on a good

• Parameter space: all distributions of W with support [0, 1]j :

Θ =
{
F ∈ F : F has support [0, 1]j

}
• The model is Gθ

(
w1, . . . ,wj

)
≡ Pθ

(
W1 ≤ w1, . . . ,Wj ≤ wj ,

∑j
j=1 Wj = 1

)
• Target parameter: the expected fraction of income spent on clothing: π = E [W2]
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Partial Identification Example: Expenditure Shares

Examples of Partial Identification: Expenditure Shares

• Because W1 is observed, the expected food expenditure share can be trivially identified:

EF [W1] = EG [W1]

• W2 is unobserved, so the expected clothing expenditure share cannot be point identified

• However, knowledge of E [W1] can be used to bound E [W2]

• Given the restriction on the support of W , the lower bound is trivially 0

• Because
∑j

j=1 Wj = 1 by assumption and E [W1] is point identified, the upper bound is 1− E [W1],
which occurs if food and clothing jointly exhaust consumer budgets (on average)

• Thus, E [W2] is partially identified as

π ≡ E [W2] ∈ [0, 1− EG [W1]]
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

• Demand is commonly estimated with discrete choice models of product differentiation

• Individual i ’s utility from purchasing and consuming product j ∈
{
0, 1, . . . , j

}
is

Uij = αiPij + X ′
ijβi + ηj + εij

where αi and βi are random coefficients, P indicates prices, X is a vector of observed product
characteristics, and η encompasses unobserved product features

• The distribution of utility draws, ε, is typically parameterized as a Type-I Extreme Value

• This modeling choice is referred to as conditional logit

• With this parameterization of the i.i.d. shocks, individual choice probabilities are

P (i → j) =
exp

(
αiPij + X ′

ijβi + ηj
)∑j

k=0 exp (αiPik + X ′
ikβi + ηk)
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

• Parameters can be conveniently estimated with maximum likelihood

• However, the T1EV parameterization imposes severe restrictions on consumer behavior

• The most salient restriction is the Independence of Irrelevant Alternatives property:

P (i → j)

P (i → k)
=

exp
(
αiPij + X ′

ijβi + ηj
)

exp (αiPik + X ′
ikβi + ηk)

∀j , k

Whether a consumer’s choice set is expanded (restricted) by the inclusion (exclusion) of a product
has no effect on the relative choice probabilities of any pair of alternatives

• If one could just not parameterize the distribution of latent utility draws...
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

Tebaldi, Torgovitsky, and Yang (2019):

• Does not parameterize the distribution of latent utility draws

• Partially identifies target parameters associated with consumer demand counterfactuals

• Assumes that consumer valuations and product prices are additively separable:

Yi ≡ arg max
j∈{0,1,...,j}

Vij − Pj

where V denotes valuations and P indicates prices

• Key intuition: given one or more price vectors, it is possible to partition the space of valuations
into sets in which consumer behavior is observationally equivalent
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

Consider the case in which there are j = 2 products and let pa be an observed price vector.
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

Now let p∗ be a counterfactual price vector.
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

Combine the previous two figures and construct the Minimal Relevant Partition (MRP).
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

• Consumer valuations differ within each subset of the space of valuations

• But consumer choices do not vary, so those valuations are observationally equivalent

• E.g. consumers with valuations in V4 choose good 2 when p = pa and good 1 when p = p∗

• The observed data consist of consumption choice shares when p = pa

• E.g. P (Y = 0) = 1− α− β, P (Y = 1) = α, P (Y = 2) = β
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Partial Identification Example: Demand for Differentiated Products

Examples of Partial Identification: Demand for Differentiated Products

Suppose the target parameter were the share of consumers who buy good 2 if p = p∗

• Model assumptions are not sufficient to point identify ϕ3 =
∫
V3

f (v) dv

• But observed choice shares can be used to construct bounds for the target parameter

• “Worst-case” scenario: consumers who buy good 2 if p = pa have valuations in V2 and/or V4

• “Best-case” scenario: consumers who buy good 2 if p = pa have valuations in V3

• The target parameter can be bounded below by 0 and above by P (Y = 2) = β
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

The following example is based on Heckman, Ichimura, and Todd (1998):

• D ∈ {0, 1} indicates participation in a job training program

• X ∈ Rdx is a vector of predetermined observable characteristics

• Y ∈ R denotes earnings at some point after the job training program

• Consider two alternative institutional scenarios:

1 The job training program accepts all individuals who wish to participate

2 Job training is randomly offered to a subset of applicants
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

Consider the case in which all applicants are accepted into the program:

• Observed data: a random vector, W ≡ (Y ,D,X ), jointly distributed according to G

• Parameter: θ = F , where F is the joint distribution function for (Y (0),Y (1),D,X )

• Parameter space: all distributions such that selection on observables holds

Θ = {θ ∈ Θ : (Y (0),Y (1)) ⊥⊥ D|X under F}

• Model: Gθ (y , d , x) = Pθ (DY (1) + (1− D)Y (0) ≤ y ,D ≤ d ,X ≤ x)

• No focus on a specific target parameter, so the identified set is

Θ∗ (G ) ≡ {θ ∈ Θ : Gθ (y , d , x) = G (y , d , x) ∀y , d , x}
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

• A model is said to be falsifiable if there exists a known function τ : G → {0, 1} such that

1 τ (G) = 1 =⇒ Θ∗ (G) = ∅

2 τ (G) = 1 for at least one G ∈ G

• Assume ∃ τ that meets these two conditions. Thus, ∃G such that Θ∗ (G ) = ∅

• Argue by contradiction. Suppose there existed a state of the world (i.e., a θ) such that

Pθ (Y (0) ≤ y0,Y (1) ≤ y1|D = d ,X = x) ≡ PG (Y ≤ y0|D = 0,X = x)PG (Y ≤ y1|D = 1,X = x)

Pθ (D = d ,X = x) = PG (D = d ,X = x)

for all y0, y1, d , x , i.e., potential outcomes are independent of D conditional on X .
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

• The proposed state of the world (i.e., parameter) θ:

1 Satisfies selection on observables, i.e., θ ∈ Θ, because Pθ does not depend on d = 0, 1.

2 Implies a distribution that is “consistent” with the distribution of observed data, G :

Pθ (Y ≤ y |D = 0,X = x) = Pθ (DY (1) + (1− D)Y (0) ≤ y |D = 0,X = x)

= Pθ (Y (0) ≤ y |D = 0,X = x)

= Pθ (Y (0) ≤ y ,Y (1) ≤ +∞|D = 0,X = x)

= PG (Y ≤ y |D = 0,X = x)PG (Y ≤ +∞|D = 1,X = x)

= PG (Y ≤ y |D = 0,X = x)× 1

Pθ (Y ≤ y |D = 1,X = x) = 1× PG (Y ≤ y |D = 1,X = x)

for all x ∈ X . Thus, Gθ = G , so θ ∈ Θ∗ (G).

• θ ∈ Θ and θ ∈ Θ∗ (G ) contradict that Θ∗ (G ) = ∅. Thus, the model is not falsifiable.
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

Consider the case in which a random subset of the applicants is offered participation:

• S ∈ {0, 1} denotes whether a worker applied for/selected into the program

• R ∈ {0, 1} denotes whether a worker was randomized into the program

• D ≡ SR: workers are “treated” if they apply for and are randomized into the program

• In the first scenario, selection on observables entails assuming that (Y (0),Y (1)) ⊥⊥ S |X
• Non-applicants’ earnings are comparable to potential untreated earnings of participants

• As shown above, this model is untestable (not falsifiable) because all applicants are treated

• In the second scenario, non applicants’ earnings should be comparable to observed earnings of
applicants who are not randomized into the program (and have the same x)
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

• Parameter: θ = F , where F is the joint distribution function for (Y (0),Y (1),R,S ,X )

• Parameter space: all distributions such that selection on observables holds and program
participation is randomly assigned to applicants

Θ = {θ ∈ Θ : (Y (0),Y (1)) ⊥⊥ SR|X and (Y (0),Y (1)) ⊥⊥ R|S = 1 under F}

• Model: Gθ (y , r , s, x) = Pθ (SRY (1) + (1− SR)Y (0) ≤ y ,R ≤ r ,S ≤ s,X ≤ x)

• Any state of the world implies a distribution for “unsuccessful” applicants:

Pθ (Y ≤ y |R = 0,S = 1,X = x) = Pθ (Y (0) ≤ y |R = 0,S = 1,X = x)

= Pθ (Y (0) ≤ y |S = 1,X = x)

= Pθ (Y (0) ≤ y |S = 0,X = x)

= Pθ (Y ≤ y |S = 0,X = x)
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Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

Falsifying Selection on Observables

Thus, a function τ can be constructed as follows:

τ (G ) = I [PG (Y ≤ y |R = 0,S = 1,X = x) ̸= PG (Y ≤ y |S = 0,X = x)]

If τ (G) were equal to 1 and θ belonged to the identified set, then

Pθ (Y ≤ y |R = 0,S = 1,X = x) = PG (Y ≤ y |R = 0,S = 1,X = x)

̸= PG (Y ≤ y |S = 0,X = x)

= Pθ (Y ≤ y |S = 0,X = x)

which would contradict the equality proven in the previous slide. This model is falsifiable.

Francesco Ruggieri The Theory of Identification October 21, 2020 29



Summary

1 Framework for the Theory of Identification

2 Point Identification

• Example: Median

• Example: Linear Supply and Demand

• Example: Latent Error Distribution

3 Partial Identification

• Example: Expenditure Shares

• Example: Demand for Differentiated Products

4 Falsifying Selection on Observables (Heckman, Ichimura, and Todd 1998)

5 Summary

Francesco Ruggieri The Theory of Identification October 21, 2020 29



Summary

Summary

• Given a model, a target parameter is

• Point identified, if there exists no other observationally equivalent target parameter

• Set identified, if there exist other observationally equivalent target parameters (while at least
another is not)

• Without further assumptions, selection on observables is not falsifiable

• Heckman, Ichimura, and Todd (1998) discusses a setting in which it is falsifiable
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