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Framework for Selection on Observables

Framework for Selection on Observables

• D ∈ {0, 1} is a binary treatment, Y ∈ R is an outcome of interest

• D and Y are linked by potential outcomes Y (0),Y (1)

• X ∈ Rdx is a vector of predetermined, observable characteristics with support X

• The treatment is as-good-as randomly assigned conditional on observables:

(Y (0),Y (1)) ⊥⊥ D|X = x for all x ∈ X

• Three canonical target parameters:

ATE ≡ E [Y (1)− Y (0)]

ATT ≡ E [Y (1)− Y (0)|D = 1]

ATU ≡ E [Y (1)− Y (0)|D = 0]
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Identification of Target Parameters

Average Treatment Effect

Begin with the Average Treatment Effect:

ATE ≡ E [Y (1)− Y (0)]

= E [E [Y (1)− Y (0)|X ]] by the Law of Iterated Expectations

= E [E [Y (1)|X ]− E [Y (0)|X ]] by the linearity of E [·]
= E [E [Y (1)|D = 1,X ]− E [Y (0)|D = 0,X ]] because (Y (0),Y (1)) ⊥⊥ D|X
= E [E [Y |D = 1,X ]− E [Y |D = 0,X ]] because, conditional on D = d , Y = Y (d)

Intuitively, the ATE can be backed out in two steps:

1 Compute E [Y |D = 1,X = x ]− E [Y |D = 0,X = x ] for all x ∈ X

2 Integrate E [Y |D = 1,X ]− E [Y |D = 0,X ] using the unconditional distribution of X

Francesco Ruggieri Selection on Observables: Theory October 7, 2020 3



Identification of Target Parameters

Average Treatment Effect on the Treated/Untreated

Consider the Average Treatment Effect on the Treated:

ATT ≡ E [Y (1)− Y (0)|D = 1] = E [Y (1)|D = 1]− E [Y (0)|D = 1] by the linearity of E [·]
= E [Y |D = 1]− E [Y (0)|D = 1] because, conditional on D = 1, Y = Y (1)

= E [Y |D = 1]− E [E [Y (0)|D = 1,X ] |D = 1] by the Law of Iterated Expectations

= E [Y |D = 1]− E [E [Y (0)|D = 0,X ] |D = 1] because Y (0) ⊥⊥ D|X
= E [Y |D = 1]− E [E [Y |D = 0,X ] |D = 1] because, conditional on D = 0, Y = Y (0)

Intuitively, the ATT can be backed out in three steps:

1 Compute E [Y |D = 0,X = x ] for all x ∈ X

2 Integrate E [Y |D = 0,X ] using the distribution of X among units with D = 1

3 Compute E [Y |D = 1] and subtract the quantity in (2)
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Identification of Target Parameters

Average Treatment Effect on the Treated/Untreated

The Average Treatment Effect on the Untreated is symmetrically identified:

ATU = E [E [Y |D = 1,X ] |D = 0]− E [Y |D = 0]

Heuristically, it can be backed out in three steps:

1 Compute E [Y |D = 1,X = x ] for all x ∈ X

2 Integrate E [Y |D = 1,X ] using the distribution of X among units with D = 0

3 Compute E [Y |D = 0] and subtract it from the quantity in (2)

Notice that the ATT and the ATU require weaker assumptions than the ATE:

• Ignorable treatment assignment: Y (0) ⊥⊥ D|X (ATT) and Y (1) ⊥⊥ D|X (ATU)

• Overlap: ∀x ∈ X ,P (D = 0|X = x) > 0 (ATT) and P (D = 1|X = x) > 0 (ATU)
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Estimation of Target Parameters

Estimation of Target Parameters

• To summarize, under the assumption of selection on observables:

ATE = E [E [Y |D = 1,X ]− E [Y |D = 0,X ]]

ATT = E [Y |D = 1]− E [E [Y |D = 0,X ] |D = 1]

ATU = E [E [Y |D = 1,X ] |D = 0]− E [Y |D = 0]

• Let us focus on alternative estimators for these target parameters:

1 Imputation if X is discrete

2 Imputation with linear regression with additive separability between D and X

3 Imputation with linear regression without additive separability between D and X
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Estimation of Target Parameters Imputation if X is Discrete

Imputation if X is Discrete

• Suppose X =
{
x1, . . . , xj

}
and P (X = xj) > 0 ∀j ∈

{
1, . . . , j

}
• In this case, the population target parameters can be expressed as

ATE =

j∑
j=1

(E [Y |D = 1,X = xj ]− E [Y |D = 0,X = xj ])× P (X = xj)

ATT = E [Y |D = 1]−
j∑

j=1

E [Y |D = 0,X = xj ]× P (X = xj |D = 1)

ATU =

j∑
j=1

E [Y |D = 1,X = xj ]× P (X = xj |D = 0)− E [Y |D = 0]
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Estimation of Target Parameters Imputation if X is Discrete

Imputation if X is Discrete

Consider a n-dimensional sample of i.i.d. random variables, {Yi ,Di ,Xi}ni=1. For d ∈ {0, 1}:

M̂d ≡
∑n

i=1 Yi × I [Di = d ]∑n
i=1 I [Di = d ]

p→ E [Y |D = d ]

M̂d (xj) ≡
∑n

i=1 Yi × I [Xi = xj ,Di = d ]∑n
i=1 I [Xi = xj ,Di = d ]

p→ E [Y |X = xj ,D = d ]

X j ≡
∑n

i=1 I [Xi = xj ]

n

p→ P (X = xj)

X dj ≡
∑n

i=1 I [Xi = xj ,Di = d ]∑n
i=1 I [Di = d ]

p→ P (X = xj |D = d)
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Estimation of Target Parameters Imputation if X is Discrete

Imputation if X is Discrete

Imputation estimators for the three target parameters of interest are the following:

ÂTE ≡
j∑

j=1

[
M̂1 (xj)− M̂0 (xj)

]
× X j

p→ ATE

ÂTT ≡ M̂1 −
j∑

j=1

M̂0 (xj)× X 1j
p→ ATT

ÂTU ≡
j∑

j=1

M̂1 (xj)× X 0j − M̂0
p→ ATU

However, X is often high-dimensional and/or has components with continuous support...

Francesco Ruggieri Selection on Observables: Theory October 7, 2020 9



Estimation of Target Parameters Imputation if X is Discrete

Imputation with Linear Regression

• If X ∈ R, the curse of dimensionality will typically kick in quickly

• It may be infeasible to compute conditional outcome means within bins implied by X

• Within-bin conditional outcome means may be approximated with linear regression

• A key choice in this regard is whether to allow for separability between D and X :

1 If D and X are assumed to be additively separable, then

Y = α∗ + β∗D + γ∗X + U with E [U] = E [DU] = E [XU] = 0

2 If D and X are not assumed to be additively separable, then

Y = α∗ + β∗D + γ∗X + δ∗DX + U with E [U] = E [DU] = E [XU] = E [DXU] = 0
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Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

If one assumes additive separability between D and X , then

Y = α∗ + β∗D + γ∗X + U with E [U] = E [DU] = E [XU] = 0

Thus, conditional ATEs can be approximated as follows:

ATE (x) ≡ E [Y (1)− Y (0)|X = x ]

= E [Y (1)|X = x ]− E [Y (0)|X = x ] by the linearity of E [·]
= E [Y (1)|D = 1,X = x ]− E [Y (0)|D = 0,X = x ] because (Y (0),Y (1)) ⊥⊥ D|X
= E [Y |D = 1,X = x ]− E [Y |D = 0,X = x ] because, condit. on D = d , Y = Y (d)

≈ L (Y |D = 1,X = x)− L (Y |D = 0,X = x)

= (α∗ + β∗ + γ∗x)− (α∗ + γ∗x)

= β∗
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Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

• With additive separability, ATEs are constant across bins implied by the observables:

ATE (x) ≈ β∗ ∀x ∈ X

• Because (Y (0),Y (1)) ⊥⊥ D|X

ATE (X ) ≡ E [Y (1)− Y (0)|X ] = E [Y (1)− Y (0)|D = 1,X ] ≡ ATT (X )

= E [Y (1)− Y (0)|D = 0,X ] ≡ ATU (X )

• Thus, ATE (x) = ATT (x) = ATU (x) = β∗ ∀x ∈ X
• This may be restrictive, especially if agents make choices based on observable characteristics
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Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

• Unconditional target parameters can be easily backed out:

ATE = E [ATE(X )] ≈ E [β∗] = β∗

ATT = E [ATT(X )|D = 1] = E [ATE(X )|D = 1] ≈ E [β∗|D = 1] = β∗

ATU = E [ATU(X )|D = 0] = E [ATE(X )|D = 0] ≈ E [β∗|D = 0] = β∗

• Thus, with additive separability, ATE = ATT = ATU ≈ β∗

• β∗ can be consistently estimated with Ordinary Least Squares
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Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

• Suppose additive separability between D and X were a plausible assumption

• If ATE(x) = c ∀x ∈ X , then probably not unrealistic to assume that Y (1)− Y (0) = τ

• If treatment effects are homogeneous, is linear regression an ideal tool?

Y = α∗ + β∗D + γ∗X + U with E [U] = E [DU] = E [XU] = 0

• In other words, how does β∗ relate to τ?

Francesco Ruggieri Selection on Observables: Theory October 7, 2020 14



Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

Let us focus on β∗ and apply the Frisch-Waugh Theorem:

β∗ =
E
[
D̃Y

]
E
[
D̃2

] where D̃ ≡ D − L (D|1,X ) = D − π∗
0 − π∗

1X

Because D is regressed onto a constant, E
[
D̃
]
= 0. Thus:

β∗ =
E
[
D̃Y

]
E
[
D̃2

] =
E
[(

D̃ − E
[
D̃
])

Y
]

E
[
D̃2

]
− E

[
D̃
]2 =

Cov
[
D̃,Y

]
Var

[
D̃
]

Francesco Ruggieri Selection on Observables: Theory October 7, 2020 15



Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

Apply the switching equation and exploit the orthogonality between D̃ and X :

β∗ =
Cov

[
D̃,Y (0) + (Y (1)− Y (0))D

]
Var

[
D̃
] =

Cov
[
D̃,Y (0) + τD

]
Var

[
D̃
]

=
Cov

[
D̃,Y (0)

]
Var

[
D̃
] + τ

Cov
[
D̃,D

]
Var

[
D̃
] =

Cov
[
D̃,Y (0)

]
Var

[
D̃
] + τ

Cov
[
D̃,D − L (D|1,X )

]
Var

[
D̃
]

= τ +
Cov

[
D̃,Y (0)

]
Var

[
D̃
]
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Estimation of Target Parameters Imputation with Linear Regression with Additive Separability between D and X

Imputation with Linear Regression with Additive Separability

Finally, apply the definition of regression residual:

β∗ = τ +
Cov [D − π∗

0 − π∗
1X ,Y (0)]

Var
[
D̃
] = τ +

Cov [D − π∗
1X ,Y (0)]

Var
[
D̃
]

• The denominator is strictly positive because D̃ is a nondegenerate random variable

• The numerator is of ambiguous sign as it depends on Cov [D,Y (0)], Cov [X ,Y (0)], π∗
1

• Even if one assumes homogeneous treatment effects, then in general β∗ ̸= τ

• They will be equal as long as Cov [D,Y (0)] = π∗
1Cov [X ,Y (0)], which is untestable
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Estimation of Target Parameters Imputation with Linear Regression without Additive Separability between D and X

Imputation with Linear Regression without Additive Separability

If one does not assume additive separability between D and X , then

Y = α∗ + β∗D + γ∗X + δ∗DX + U with E [U] = E [DU] = E [XU] = E [DXU] = 0

Notice that this is numerically equivalent to regressing Y on X among units with D = d :

D = 0 : Y = α∗ + γ∗X + V with E [V ] = E [XV ] = 0

D = 1 : Y = (α∗ + β∗)︸ ︷︷ ︸
λ∗

+(γ∗ + δ∗)︸ ︷︷ ︸
η∗

X +W with E [W ] = E [XW ] = 0

Thus, the linear regression at the top is analogous to the approach adopted by Imbens (2004)

Francesco Ruggieri Selection on Observables: Theory October 7, 2020 18



Estimation of Target Parameters Imputation with Linear Regression without Additive Separability between D and X

Imputation with Linear Regression without Additive Separability

Conditional ATEs can be approximated as follows:

ATE (x) ≡ E [Y (1)− Y (0)|X = x ]

= E [Y (1)|X = x ]− E [Y (0)|X = x ] by the linearity of E [·]
= E [Y (1)|D = 1,X = x ]− E [Y (0)|D = 0,X = x ] because (Y (0),Y (1)) ⊥⊥ D|X
= E [Y |D = 1,X = x ]− E [Y |D = 0,X = x ] because, condit. on D = d , Y = Y (d)

≈ L (Y |D = 1,X = x)− L (Y |D = 0,X = x)

= (α∗ + β∗ + γ∗x + δ∗x)− (α∗ + γ∗x)

= β∗ + δ∗x

Without additive separability between D and X , ATEs vary across bins implied by X :

ATE (x) ≈ β∗ + δ∗x ∀x ∈ X
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Estimation of Target Parameters Imputation with Linear Regression without Additive Separability between D and X

Imputation with Linear Regression without Additive Separability

• As in the previous case, conditional target parameters are equal to each other:

ATE (X ) = ATT (X ) = ATU (X ) ≈ β∗ + δ∗X

• Unconditional target parameters can be backed out as follows:

ATE = E [ATE (X )] ≈ E [β∗ + δ∗X ] = β∗ + δ∗E [X ]

ATT = E [ATT (X ) |D = 1] ≈ E [β∗ + δ∗X |D = 1] = β∗ + δ∗E [X |D = 1]

ATU = E [ATU (X ) |D = 0] ≈ E [β∗ + δ∗X |D = 0] = β∗ + δ∗E [X |D = 0]

• Without additive separability, target parameters will generally differ from each other

• ATE = ATT = ATU ≈ β∗ + δ∗E [X ] in the case in which E [X |D] = E [X ]
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Estimation of Target Parameters Imputation with Linear Regression without Additive Separability between D and X

Imputation with Linear Regression without Additive Separability

Consider a n-dimensional sample of i.i.d. random variables, {Yi ,Di ,Xi}ni=1:

• β∗ and δ∗ can be consistently estimated with Ordinary Least Squares

• The remaining components of the target parameters can be estimated as

X ≡
∑n

i=1 Xi

n

p→ E [X ]

X 1 ≡
∑n

i=1 XiDi∑n
i=1 Di

p→ E [X |D = 1]

X 0 ≡
∑n

i=1 Xi (1− Di )∑n
i=1 (1− Di )

p→ E [X |D = 0]

• ATE, ATT, ATU are consistently estimated via Continuous Mapping Theorem
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Summary

Summary

Under the assumption of selection on observables, target parameters can be estimated as follows:

Parameter Identification Discrete X

ATE E [E [Y |D = 1,X ]− E [Y |D = 0,X ]]
∑j

j=1

[
M̂1 (xj)− M̂0 (xj)

]
X j

ATT E [Y |D = 1]− E [E [Y |D = 0,X ] |D = 1] M̂1 −
∑j

j=1 M̂0 (xj)X 1j

ATU E [E [Y |D = 1,X ] |D = 0]− E [Y |D = 0]
∑j

j=1 M̂1 (xj)X 0j − M̂0

Parameter Imputation with LR, with Separability Imputation with LR, without Separability

ATE ≈ B̂OLS ≈ B̂OLS + D̂OLSX

ATT ≈ B̂OLS ≈ B̂OLS + D̂OLSX 1

ATU ≈ B̂OLS ≈ B̂OLS + D̂OLSX 0
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