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Monte Carlo Simulations

Monte Carlo Simulations

Monte Carlo experiments hinge on repeated random sampling to fulfill various goals:

• Provide a numerical approximation to integrals using empirical means

• Applications: Method of Simulated Moments (MSM) and Maximum Simulated Likelihood (MSL)

• The “quality” of the approximation increases with the number of simulations (via LLN)

• Investigate the properties of any statistical procedure via simulation
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Monte Carlo Simulations

Monte Carlo Simulations: Implementation

1 Specify the number of Monte Carlo samples, m, and the size of each sample, n

2 Assume knowledge of the joint distribution of all random variables in the experiment

• E.g., Y = 5 + 1.6 · sin(X ) · log(X ) + R, with X ∼ U [0, 10], R ∼ N (0, 9), and X ⊥⊥ R

3 For each one of the m Monte Carlo iterations:

• Simulate a n-dimensional sample from the joint distribution of random variables

• E.g. {(Yi ,Xi ,Ri )}ni=1 is an i.i.d. sample from the joint probability distribution of (Y ,X ,R)

• Perform a deterministic computation on this sample

• E.g. Perform local linear regression of Y on X with bandwidth h = 0.5, and store fitted values

4 Compute one or more statistics by averaging quantities across Monte Carlo samples

• E.g. compute the Mean Squared Error of local linear regression fitted values
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Monte Carlo Simulations

Monte Carlo Simulations: Example
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Nonparametric Bootstrap

Nonparametric Bootstrap

• A variant of Monte Carlo simulation that can be implemented with

1 Fewer parametric assumptions on the Data Generating Process

2 Little additional code beyond the one required to estimate the model in the first place

• Nonparametric bootstrap is typically used to compute analytically complex statistics

• E.g. standard errors, when working with Continuous Mapping and Delta Method is hard

• It hinges on sampling with replacement from the empirical distribution of the data

• Let P = {1, 2, 3, 4, 5} be the population. Examples of 3-dimensional samples with replacement are
S1 = {4, 1, 2}, S2 = {5, 2, 5}, and S3 = {4, 4, 4}

• Smoothness conditions must be satisfied for nonparametric bootstrap to be valid

• E.g. Bootstrap is invalid if applied to one-to-one propensity score matching (more later)

Francesco Ruggieri Tools and Frameworks for Causal Inference September 30, 2020 5



Nonparametric Bootstrap

Nonparametric Bootstrap

• X ∈ Rdx is a random vector distributed according to some population cdf F

• {Xi}ni=1 is a n-dimensional collection of draws from F (i.e., a sample)

• F̂ is the empirical cdf of X

• This distribution places equal probability mass to each of the n draws, {Xi}ni=1

• θ is a parameter of interest that can be estimated by T̂ = T
(
F̂ (X1, . . . ,Xn)

)
• A bootstrap sample of size n,

{
X b
i

}n

i=1
, is a collection of i.i.d. draws from F̂

• Sampling with replacement is necessary for X b
1 , . . . ,X

b
n to be i.i.d.
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Nonparametric Bootstrap

Nonparametric Bootstrap

1 Specify the number of bootstrap samples b

2 Let b ∈
{
1, 2, . . . , b

}
. For each bootstrap iteration:

• Extract a bootstrap sample of size n,
{
X b

i

}n

i=1

• Perform a deterministic computation on this bootstrap sample

• E.g. Regress X1 on X2, . . . ,Xk and store the coefficient associated with X2, i.e., β̂b
2

3 Compute one or more statistics by averaging quantities across bootstrap samples

• E.g. compute the standard error associated with β̂2 as

√
1

b

∑b
b=1

(
β̂b
2 − 1

b

∑b
j=1 β̂

j
2

)2

• As above, approximation quality increases with the number of bootstrap samples b
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Nonparametric Bootstrap

Nonparametric Bootstrap

Object Data Bootstrap

Population Distribution F F̂

Sample {Xi}ni=1

{
X b
i

}n

i=1
i.i.d.

Empirical Distribution F̂ F̂ b

Parameter θ = T (F ) T̂ = T
(
F̂
)

Estimator T̂ = T
(
F̂
)

T̂ b = T
(
F̂ b

)
Source: Lecture notes by Charles J. Geyer
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Frameworks for Causal Inference

Frameworks for Causal Inference

Two main frameworks for causal inference:

1 Latent variables, or all-causes, model:

Y = g (D,U)

where D and U denote the observed and unobserved determinants of Y , respectively.
Together, D and U exhaustively cause the outcome.

2 Potential outcomes model:
Y =

∑
d∈D

Y (d)I [D = d ]

where Y (d) is the counterfactual Y associated with treatment state d .
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Frameworks for Causal Inference

Example: from Potential Outcomes to All-Causes

• Consider a binary treatment D ∈ {0, 1}

• Assume that D and Y are linked by potential outcomes Y (0) and Y (1)

• Derive a linear all-causes model from the potential outcomes model:

Y = DY (1) + (1− D)Y (0)

= E [Y (0)]︸ ︷︷ ︸
≡α

+(Y (1)− Y (0))︸ ︷︷ ︸
≡β

D + Y (0)− E [Y (0)]︸ ︷︷ ︸
≡U

= α+ βD + U ≡ g (D,U)

• β could be assumed to be a deterministic constant (homogeneous treatment effects) or a
nondegenerate random variable (heterogeneous treatment effects)
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Frameworks for Causal Inference

Example: from All-Causes to Potential Outcomes

• Maintain the assumption that the treatment is binary

• Assume a linear all-causes model of the observed and unobserved determinants of Y ,

Y = α+ βD + U

• To derive a potential outcomes model, it is sufficient to define

Y (0) ≡ g(0,U) = α+ U

Y (1) ≡ g(1,U) = α+ β + U

• Both Y (0) and Y (1) are random variables because U is a random variable

• In addition, β may be a random variable if the effect of D on Y is stochastic
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Unobserved Determinants of the Outcome vs. Linear Regression Residual

Unobserved Determinants of the Outcome vs. Linear Regression Residual

• In general, the conditional expectation function of a random variable Y is nonlinear:

E[Y |D] = h (D; θ)

where h (·) is some function of a random vector D and a parameter vector θ

• h (D, θ) is typically unknown but can be approximated:

• A convenient approximation choice is the “best” linear approximation

β∗ ∈ arg min
β∈Rdd

E
[(
E[Y |D]− D ′β

)2]
(BLA)

• This minimization problem is equivalent to the linear prediction problem

β∗ ∈ arg min
β∈Rdd

E
[(
Y − D ′β

)2]
(BLP)

Francesco Ruggieri Tools and Frameworks for Causal Inference September 30, 2020 12



Unobserved Determinants of the Outcome vs. Linear Regression Residual

Unobserved Determinants of the Outcome vs. Linear Regression Residual

• The first-order necessary conditions associated with both minimization problems are

E[D (Y − D ′β∗)] = E[DU] = 0d

where U ≡ Y − D ′β∗ is a statistical residual

• U captures the “quality” of the linear approximation to E[Y |D] = h (D; θ)

• Being a statistical residual, U has no causal interpretation

• Analogously, β∗ is the solution to a Mean Squared Error minimization problem
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Unobserved Determinants of the Outcome vs. Linear Regression Residual

Unobserved Determinants of the Outcome vs. Linear Regression Residual

• Consider the linear causal model
Y = D ′β + U

• If U were interpreted as encompassing the unobserved determinants of Y , then

• E [DU] = 0d would imply that observed and unobserved determinants of Y are linearly unrelated

• This is not a statistical property, but a causal one, and its credibility is assessed subjectively

• The first part of this course will be devoted to studying cases in which β∗ = β

• Under selection on observables, β∗ identifies only some components of β
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